Java Programming —
Abstract Class & Interface

Oum Saokosal

Master’s Degree in information systems, Jeonju
University, South Korea

012 252 752 [070 252 752

oumsaokosal@gmail.com

Contact Me

Tel: 012 252 752 [070 252 752

Email: oumsaokosal@gmail.com

FB Page: https://facebook.com/kosalgeek

PPT: http://www.slideshare.net/oumsaokosal

YouTube: https://www.youtube.com/user/oumsaokosal

Twitter: https://twitter.com/okosal

Web: http://kosalgeek.com

Abstract Classes and Interfaces

The objectives of this chapter are:

» [0 explore the concept of abstract classes
» [0 understand interfaces

» [0 understand the importance of both.

What is an Abstract class?

» Superclasses are created through the process called
"generalization”

® Common features (methods or variables) are factored out of
object classifications (ie. classes).

® Those features are formalized in a class. This becomes the
superclass

® The classes from which the common features were taken
become subclasses to the newly created super class

» Often, the superclass does not have a "meaning" or
does not directly relate to a "thing" in the real world
» It Is an artifact of the generalization process

» Because of this, abstract classes cannot be instantiatg
® They act as place holders for abstraction

Abstract Class Example

» In the following example, the subclasses represent objects
taken from the problem domain.

» The superclass represents an abstract concept that does not
exist "as is" in the real world.

Abstract superclass:

Vehicle

- make: String
- model: String
- tireCount: int

.

Truck
- bedCapacity: int

<+— Note: UML represents abstract

classes by displaying their name
in italics.

- trunkCapacity:
int

What Are Abstract Classes Used For?

» Abstract classes are used heavily in Design Patterns

® Creational Patterns: Abstract class provides interface for creating
objects. The subclasses do the actual object creation

® Structural Patterns: How objects are structured is handled by an
abstract class. What the objects do is handled by the subclasses

® Behavioural Patterns: Behavioural interface is declared in an abstract
superclass. Implementation of the interface is provided by subclasses.

« Be careful not to over use abstract classes

» Every abstract class increases the complexity of your
design
® Every subclass increases the complexity of your design

® Ensure that you receive acceptable return in terms of functionality gi
the added complexity.

Defining Abstract Classes

» Inheritance is declared using the "extends" keyword
® If inheritance is not defined, the class extends a class called Object

public abstract class Vehicle

{

private String make;
private String model;
private int tireCount;

Vehicle

- make: String
- model: String
- tireCount: int

3

public class Car extends Vehicle Car Truck

{ - trunkCapacity: int - bedCapacity: int
private int trunkCapacity;

[...]

public class Truck extends Vehicle

{ ,
private int bedCapacity; —
oo d tg/as

Abstract Methods

» Methods can also be abstracted
® An abstract method is one to which a signature has been provided, but
no implementation for that method is given.
® An Abstract method is a placeholder. It means that we declare that a
method must exist, but there is no meaningful implementation for that
methods within this class

» Any class which contains an abstract method MUST also be
abstract
» Any class which has an incomplete method definition
cannot be instantiated (ie. it is abstract)

« Abstract classes can contain both concrete and abstract
methods.

® |[f a method can be implemented within an abstract class, and
implementation should be provided.

Abstract Method Example

» In the following example, a Transaction's value can be
computed, but there is no meaningful implementation that
can be defined within the Transaction class.
® How a transaction is computed is dependent on the transaction's type
® Note: This is polymorphism.

Transaction
- computeValue(): int

[}

RetailSale StockTrade
- compute Value(): int - compute Value(): int

Defining Abstract Methods

» Inheritance is declared using the "extends" keyword
® |f inheritance is not defined, the class extends a class called Object

public abstract class Transaction /
{

public abstract int computeValue(); Transaction .
- computeValue(): int

| Note: no implementation

public class RetailSale extends Transaction

{ ublic int computeValue() RetailSale StockTrade
P P - computeValue(): int - computeValue(): int

{

[...]

public class StockTrade extends Transaction

{

public int computeValue()

{

[ov.]

What is an Interface?

» An interface is similar to an abstract class with the following
exceptions:

® All methods defined in an interface are abstract. Interfaces can contain
no implementation

® |nterfaces cannot contain instance variables. However, they can
contain public static final variables (ie. constant class variables)

. Interfaces are declared using the "interface" keyword

« If an interface is public, it must be contained in a file which
has the same name.

. Interfaces are more abstract than abstract classes

. Interfaces are implemented by classes using the
"Implements"” keyword.

Declaring an Interface

In Steerable.java:

public interface Steerable

{
public void turnLeft(int degrees);
public void turnRight(int degrees);

t

In Car.java: /

public class Car extends Vehicle implements Steerable

{
public int turnLeft(int degrees)

{
[...]

public int turnRight(int degrees)

{
[...]

Implementing Interfaces

» A Class can only inherit from one superclass. However, a
class may implement several Interfaces
® The interfaces that a class implements are separated by commas

. Any class which implements an interface must provide an
implementation for all methods defined within the interface.

® NOTE: if an abstract class implements an interface, it NEED NOT
implement all methods defined in the interface. HOWEVER, each
concrete subclass MUST implement the methods defined in the
interface.

. Interfaces can inherit method signatures from other
interfaces.

Declaring an Interface

In Car java:

public class Car extends Vehicle implements Steerable, Driveable

{
public int turnLeft(int degrees)

{

public int turnRight (int degrees)
{

// implement methods defined within the Driveable interface

» If a superclass implements an interface, it's subclasses alsa

implement the interface

Inheriting Interfaces

public abstract class Vehicle implements Steerable

{

private String make;

[...]

Vehicle

- make: String
- model: String
- tireCount: int

public class Car extends Vehicle
{

private int trunkCapacity;

[v..]

Car
- trunkCapacity: int

public class Truck extends Vehicle
{

private int bedCapacity;

[oo.]

[

Truck

- bedCapacity: int

Multiple Inheritance?

» Some people (and textbooks) have said that allowing classe
to implement multiple interfaces is the same thing as multiple
Inheritance

» This is NOT true. When you implement an interface:
® The implementing class does not inherit instance variables
® The implementing class does not inherit methods (none are defined)
® The Implementing class does not inherit associations

» Implementation of interfaces is not inheritance. An interface
defines a list of methods which must be implemented.

Interfaces as Types

» When a class is defined, the compiler views the class as a
new type.

» The same thing is true of interfaces. The compiler regards an
interface as a type.
® |t can be used to declare variables or method parameters

int 1i;
Car myFleet[];
Steerable anotherFleet[];

myFleet[1i].start();

anotherFleet[i1].turnLeft (100);
anotherFleet[i+1].turnRight(45);

Abstract Classes Versus Interfaces

« When should one use an Abstract class instead of an
interface?

® |f the subclass-superclass relationship is genuinely an "is a"
relationship.

® |f the abstract class can provide an implementation at the appropriate
level of abstraction

. When should one use an interface in place of an Abstract
Class?

® When the methods defined represent a small portion of a class

® When the subclass needs to inherit from another class

® When you cannot reasonably implement any of the methods

