
Java Programming –
Abstract Class & Interface
Oum Saokosal

Master’s Degree in information systems, Jeonju
University, South Korea

012 252 752 / 070 252 752

oumsaokosal@gmail.com

Contact Me
• Tel: 012 252 752 / 070 252 752

• Email: oumsaokosal@gmail.com

• FB Page: https://facebook.com/kosalgeek

• PPT: http://www.slideshare.net/oumsaokosal

• YouTube: https://www.youtube.com/user/oumsaokosal

• Twitter: https://twitter.com/okosal

• Web: http://kosalgeek.com

Abstract Classes and Interfaces

The objectives of this chapter are:

To explore the concept of abstract classes
To understand interfaces
To understand the importance of both.

What is an Abstract class?

Superclasses are created through the process called
"generalization"

Common features (methods or variables) are factored out of
object classifications (ie. classes).
Those features are formalized in a class. This becomes the
superclass
The classes from which the common features were taken
become subclasses to the newly created super class

Often, the superclass does not have a "meaning" or
does not directly relate to a "thing" in the real world

It is an artifact of the generalization process

Because of this, abstract classes cannot be instantiated
They act as place holders for abstraction

Vehicle
- make: String
- model: String
- tireCount: int

Car
- trunkCapacity:
int

Abstract superclass:

Abstract Class Example

In the following example, the subclasses represent objects
taken from the problem domain.

The superclass represents an abstract concept that does not
exist "as is" in the real world.

Truck
- bedCapacity: int

Note: UML represents abstract
classes by displaying their name
in italics.

What Are Abstract Classes Used For?

Abstract classes are used heavily in Design Patterns
Creational Patterns: Abstract class provides interface for creating
objects. The subclasses do the actual object creation
Structural Patterns: How objects are structured is handled by an
abstract class. What the objects do is handled by the subclasses
Behavioural Patterns: Behavioural interface is declared in an abstract
superclass. Implementation of the interface is provided by subclasses.

Be careful not to over use abstract classes
Every abstract class increases the complexity of your
design
Every subclass increases the complexity of your design
Ensure that you receive acceptable return in terms of functionality given
the added complexity.

Defining Abstract Classes

Inheritance is declared using the "extends" keyword
If inheritance is not defined, the class extends a class called Object

public abstract class Vehicle
{

private String make;
private String model;
private int tireCount;
[...]

public class Car extends Vehicle
{

private int trunkCapacity;
[...]

Vehicle
- make: String
- model: String
- tireCount: int

Car
- trunkCapacity: int

Truck
- bedCapacity: int

public class Truck extends Vehicle
{

private int bedCapacity;
[...] Often referred to as

"concrete" classes

Abstract Methods

Methods can also be abstracted
An abstract method is one to which a signature has been provided, but
no implementation for that method is given.
An Abstract method is a placeholder. It means that we declare that a
method must exist, but there is no meaningful implementation for that
methods within this class

Any class which contains an abstract method MUST also be
abstract

Any class which has an incomplete method definition
cannot be instantiated (ie. it is abstract)

Abstract classes can contain both concrete and abstract
methods.

If a method can be implemented within an abstract class, and
implementation should be provided.

Abstract Method Example

In the following example, a Transaction's value can be
computed, but there is no meaningful implementation that
can be defined within the Transaction class.

How a transaction is computed is dependent on the transaction's type
Note: This is polymorphism.

Transaction
- computeValue(): int

RetailSale
- computeValue(): int

StockTrade
- computeValue(): int

Defining Abstract Methods

Inheritance is declared using the "extends" keyword
If inheritance is not defined, the class extends a class called Object

public abstract class Transaction
{

public abstract int computeValue();

public class RetailSale extends Transaction
{

public int computeValue()
{

[...]

Transaction
- computeValue(): int

RetailSale
- computeValue(): int

StockTrade
- computeValue(): int

public class StockTrade extends Transaction
{

public int computeValue()
{

[...]

Note: no implementation

What is an Interface?

An interface is similar to an abstract class with the following
exceptions:

All methods defined in an interface are abstract. Interfaces can contain
no implementation
Interfaces cannot contain instance variables. However, they can
contain public static final variables (ie. constant class variables)

• Interfaces are declared using the "interface" keyword
If an interface is public, it must be contained in a file which
has the same name.

• Interfaces are more abstract than abstract classes

• Interfaces are implemented by classes using the
"implements" keyword.

Declaring an Interface

public interface Steerable
{

public void turnLeft(int degrees);
public void turnRight(int degrees);

}

In Steerable.java:

public class Car extends Vehicle implements Steerable
{

public int turnLeft(int degrees)
{

[...]
}

public int turnRight(int degrees)
{

[...]
}

In Car.java:

When a class "implements" an
interface, the compiler ensures that
it provides an implementation for
all methods defined within the
interface.

Implementing Interfaces

A Class can only inherit from one superclass. However, a
class may implement several Interfaces

The interfaces that a class implements are separated by commas

• Any class which implements an interface must provide an
implementation for all methods defined within the interface.

NOTE: if an abstract class implements an interface, it NEED NOT
implement all methods defined in the interface. HOWEVER, each
concrete subclass MUST implement the methods defined in the
interface.

• Interfaces can inherit method signatures from other
interfaces.

Declaring an Interface

public class Car extends Vehicle implements Steerable, Driveable
{
public int turnLeft(int degrees)
{

[...]
}

public int turnRight(int degrees)
{

[...]
}

// implement methods defined within the Driveable interface

In Car.java:

Inheriting Interfaces

If a superclass implements an interface, it's subclasses also
implement the interface

public abstract class Vehicle implements Steerable
{

private String make;
[...]

public class Car extends Vehicle
{

private int trunkCapacity;
[...]

Vehicle
- make: String
- model: String
- tireCount: int

Car
- trunkCapacity: int

Truck
- bedCapacity: int

public class Truck extends Vehicle
{

private int bedCapacity;
[...]

Multiple Inheritance?

Some people (and textbooks) have said that allowing classes
to implement multiple interfaces is the same thing as multiple
inheritance

This is NOT true. When you implement an interface:
The implementing class does not inherit instance variables
The implementing class does not inherit methods (none are defined)
The Implementing class does not inherit associations

Implementation of interfaces is not inheritance. An interface
defines a list of methods which must be implemented.

Interfaces as Types

When a class is defined, the compiler views the class as a
new type.

The same thing is true of interfaces. The compiler regards an
interface as a type.

It can be used to declare variables or method parameters

int i;
Car myFleet[];
Steerable anotherFleet[];

[...]

myFleet[i].start();

anotherFleet[i].turnLeft(100);
anotherFleet[i+1].turnRight(45);

Abstract Classes Versus Interfaces

When should one use an Abstract class instead of an
interface?

If the subclass-superclass relationship is genuinely an "is a"
relationship.
If the abstract class can provide an implementation at the appropriate
level of abstraction

• When should one use an interface in place of an Abstract
Class?

When the methods defined represent a small portion of a class
When the subclass needs to inherit from another class
When you cannot reasonably implement any of the methods

