Introduction to UML

Team Emertxe

2

* Unified Modeling Language
— OMG Standard, Object Management Group
— Based on work from Booch, Rumbaugh, Jacobson

* UML 1s a modeling language to express and
design documents, software

— Particularly useful for OO design

I What 1s UML?

— Not a process, but some have been proposed using
UML

— Independent of implementation language

2MERTXE

I Why use UML

2

Open Standard, Graphical notation for

— Specifying, visualizing, constructing, and documenting software
systems

Language can be used from general initial design to very
specific detailed design across the entire software
development lifecycle

Increase understanding/communication of product to
customers and developers

Support for diverse application areas

Support for UML in many software packages today (e.g.
Rational, plugins for popular IDE’s like NetBeans, Eclipse)

Based upon experience and needs of the user community

2MERTXE

I Brief History

2

* Inundated with methodologies in early 90’s

— Booch, Jacobson, Yourden, Rumbaugh
* Booch, Jacobson merged methods 1994
* Rumbaugh joined 1995

* 1997 UML 1.1 from OMG includes input from
others, e.g. Yourden

* UML v2.0 current version

2MERTXE

I History of UML

UmML 2.0 1
+
UML 1.4 ,
+ industrialization
UML 1-3 - --___: UHIHO
T revision s L
LANGUAGE
OMG Acceptance, Nov 1997 ———-—— UML 1.1 = alviien '
Final submission to OMG, Sep ‘97 T
First submission to OMG, Jan 97 ' standardization
UML partners - - - UML 1.0.
A
Web - June ‘96 UML 0.9
OOPSLA 95 — Unified Method 0.8
Other methods | Booch OOAD OMT OOSE

2MERTXE

I Contributions to UML

Harel
Meyer Gamma, et al

Statecharts
Before and after Frameworks and patterns,

conditions
HP Fusion

Booch
Operation descriptions and

Q0A&D \ / message numbering
UNIFIED o Embley

Rumbaugh IS oy | [NG

OMT LANGUAGE Smgfeton classes and

high-level view

Jacobson / \ Wirfs-Brock
O0SE Responsibilities
Shlaer - Mellor Odell

Object lifecycles Classification

2MERTXE

ISystems, Models and Views ->

* A model 1s an abstraction describing a subset of a system

* Aview depicts selected aspects of a model

* A notation 1s a set of graphical or textual rules for depicting
VIEWS

* Views and models of a single system may overlap each other

Examples:
* System: Aircraft
* Models: Flight simulator, scale model

* Views: All blueprints, electrical wiring, fuel system

2MERTXE

ISystems, Models and Views ->

Flightsimulator

Blueprint

Model 1
O

O
o

Scale Mode

Electrical
Wiring

2MERTXE

IModels, Views, Diagrams

 UML 1s a multi-diagrammatic language

— Each diagram is a view into a model

* Diagram presented from the aspect of a particular stakeholder
» Provides a partial representation of the system
* Is semantically consistent with other views

— Example views

Logical View

Process View
System integrators
Performance
Scalability

Throughput

Implementation View

End-user Programmers
Functionality Use Case Software management

Deployment View
System engineering
System topology
Delivery, installation
Communication

2MERTXE

IModels, Views, Diagrams_)

H

Collaboration
Diagrams

| Static views

M

Statechart

Diagrams

Dynamic views

2MERTXE

I How Many Views? ->

* Views should to fit the context

— Not all systems require all views

— Single processor: drop deployment view
— Single process: drop process view

— Very small program: drop implementation view

* A system might need additional views

— Data view, security view, ...

2MERTXE

2

* You can model 80% of most problems by
using about 20 % UML

* We only cover the 20% here

I UML: First Pass

2MERTXE

IBasic Modeling Steps ->

* Use Cases
— Capture requirements

* Domain Model
— Capture process, key classes

* Design Model

— Capture details and behaviors of use cases and
domain objects

— Add classes that do the work and define the
architecture

2MERTXE

I UML Baseline

* Use Case Diagrams
* Class Diagrams
* Package Diagrams

* Interaction Diagrams
— Sequence
— Collaboration

* Activity Diagrams
* State Transition Diagrams

* Deployment Diagrams

2MERTXE

IUse Case Diagrams

Passenger

PurchaseTicket

Used during requirements
elicitation to represent external
behavior

Actors represent roles, that is, a
type of user of the system

Use cases represent a sequence of
interaction for a type of
functionality; summary of
scenarios

The use case model 1s the set of all
use cases. It is a complete
description of the functionality of
the system and its environment

2MERTXE

I Actors

Passenger

2

An actor models an external entity which
communicates with the system:

— User
— External system

— Physical environment

An actor has a unique name and an optional
description.
Examples:

— Passenger: A person in the train

— GPS satellite: Provides the system with GPS
coordinates

2MERTXE

2

A use case represents a class of functionality
provided by the system as an event flow.

Q A use case consists of:
* Unique name

PurchaseTicket

I Use Case

* Participating actors
* Entry conditions

* Flow of events

* Exit conditions

* Special requirements

2MERTXE

Use Case Diagram:

2

Example
Name: Purchase ticket Event flow:

1. Passenger selects the number
Participating actor: Passenger of zones to be traveled.

2. Distributor displays the amount
Entry condition: due.

3. Passenger inserts money, of at

°* Passenger standing in front of
least the amount due.

ticket distributor. o
e Passenger has sufficient 4. Distributor returns change.
money to purchase ticket. 5. Distributor issues ticket.

Anything missing?

Exit condition:

°* Passenger has ticket. Exceptional cases!

2MERTXE

The <<extends>>
Relationship

* <<extends>> relationships represent
exceptional or seldom invoked cases.

* The exceptional event flows are

Passenger factored out of the main event flow for
I clarity.
* Use cases representing exceptional
© flows can extend more than one use
PurchaseTicket case.

7 A R T

|

* The direction of a <<extends>>
relationship is to the extended use case

<<extends>:
<<extends>>

OutOfOrder ‘ <<extends>> TimeOut

D

Cancel NoChange

<<extends>>

\4

2MERTXE

The <<includes>>
Relationship

* <<includes>> relationship
represents behavior that 1s

\ factored out of the use case.
Passenger o

I * <<includes>> behavior is
factored out for reuse, not because

PurchaseMultJ.Card it is an exception.
PurchaseSJ.ngleTJ.cket * The direction of a
<<includes>> <<includes>> relationship is to
<<includes>> the using use case (unlike
© <<extends>> relationships).
-, CollectMoney
<<extends>> V\<<extends>>
NoChange Cancel

2MERTXE

IUse Cases are useful to.. ->

* Determining requirements

— New use cases often generate new requirements as the
system 1s analyzed and the design takes shape.

* Communicating with clients

— Their notational simplicity makes use case diagrams a good
way for developers to communicate with clients.

* Generating test cases

— The collection of scenarios for a use case may suggest a
suite of test cases for those scenarios.

2MERTXE

Use Case Diagrams:
Summary

2

* Use case diagrams represent external behavior

* Use case diagrams are useful as an index 1nto
the use cases

* Use case descriptions provide meat of model,
not the use case diagrams.

* All use cases need to be described for the
model to be usetul.

2MERTXE

IClass Diagrams

2

* (G1ves an overview of a system by showing its
classes and the relationships among them.

— Class diagrams are static

— they display what interacts but not what happens
when they do interact

* Also shows attributes and operations of each
class

* Good way to describe the overall architecture
of system components

2MERTXE

Class Diagram:
Perspectives

2

* We draw Class Diagrams under three
perspectives

— Conceptual
* Software independent

* Language independent

— Specification

* Focus on the interfaces of the software

— Implementation

* Focus on the implementation of the software

2MERTXE

Classes:

Not Just for Code

TariffSchedule

zonel2price

P

getZones ()
getPrice ()

{Attributesj

\E)perationg

A class represent a concept
A class encapsulates state (attributes) and behavior (operations).
Each attribute has a type.

Each operation has a signature.
The class name 1s the only mandatory information.

TariffSchedule

Table zonelprice

Enumeration getZones ()

Price getPrice (Zone)

TSignaturej

TariffSchedule

2MERTXE

I Instances

2

tarif 1974 :TariffSchedule

zone2price
{'17, .20},
{'27, .40},
{'37, .60}}

* An instance represents a phenomenon.

* The name of an instance 1s underlined and can
contain the class of the instance.

* The attributes are represented with their values.

2MERTXE

UML Class Notation

* Aclass 1s a rectangle divided into three parts
— Class name
— Class attributes (i.e. data members, variables)
— Class operations (i.e. methods)
* Modifiers
— Private: -
— Public: +
— Protected: #
— Static: Underlined (i.e. shared among all members of the class)

* Abstract class: Name 1n italics

Employee

-Name : string

+ID : long

#Salary : double

+getName() : string

+setName()

-calcinternalStuff (in x : byte, iny : decimal)

2MERTXE

UML Class Notation

* Lines or arrows between classes indicate relationships

— Association

* A relationship between instances of two classes, where one class must know
about the other to do its work, e.g. client communicates to server

* indicated by a straight line or arrow
— Aggregation
* An association where one class belongs to a collection, e.g. instructor part of
Faculty
* Indicated by an empty diamond on the side of the collection
— Composition
* Strong form of Aggregation
* Lifetime control; components cannot exist without the aggregate
* Indicated by a solid diamond on the side of the collection
— Inheritance

* An inheritance link indicating one class a superclass relationship, e.g. bird is
part of mammal

* Indicated by triangle pointing to superclass

2MERTXE

l Binary Association (DY

Binary Association: Both entities “Know About” each other

A

—myB: B

-myhA: A

+doSomething ()

myB.service();

+oparation ()

tservice i)

myA.doSomething();

Optionally, may create an Associate Class

2MERTXE

I Unary Association ->

A knows about B, but B knows nothing about A

A

-myB: B*

‘\
\
\
\

+d050mething{l

myB.service(); J

+service ()

Arrow points in direction
of the dependency

2MERTXE

I Aggregation

Aggregation is an association with a “collection-member” relationship

Crate >——> Module

»

-aModule: Mcdule#* \ +service ()
+dDSomething{J
void doSomething() Hollow diamond on
aModule.service(); the Collection side

No sole ownership implied

2MERTXE

Composition

Composition 1s Aggregation with:
Lifetime Control (owner controls construction, destruction)
Part object may belong to only one whole object

Employee

Team .
-Name : string

-members : Employee ‘\HD - long
1 #Salary : double

Ly -adfaf : bool

\ +getName() : string
\ +setName()
\ -calcinternalStuff (in x : byte, in y : decimal)

members[0] = \
new Employee(); \

\Filled diamond on
delete members[0]; side of the Collection

2MERTXE

I Inheritance

Standard concept of inheritance

A

-myX: double ¥

+set¥ (:double) o
+getX () : double Base Class

T

toperation ()

¥

" Derived Class

class B() extends A

2MERTXE

IUML Multiplicities ->

Links on associations to specify more details about the relationship

Multiplicities Meaning

0.1 zero or one instance. The notation n.. m
N indicates n to m 1nstances.

no limit on the number of instances

% %
0..% or (including none).
1 exactly one instance
1..% at least one instance

2MERTXE

lUML Class Example

Customer Order
name 0.* | date
address k status
association \ calcTax
] calcTotal
> Pavinent *
abstract class~ ¥ 1. ﬁ 1 calcTotalweight
amaunt 1
role narme

multiplicity

generalization __ 4
line itern | 1.7 4—

| | | OrderDetail ‘/ \‘ em <« class name
Credit Ca=zh Check _ L .
quantity 0 1 shlpp!nngght < attributes
nurrber cashTendered hame tanstatus description
type bankiD f/
expDate calcSubTotal getPriceF orQuantity
authorized calcWeight | | getwieight « operations
authorized \
navigability

2MERTXE

IAssociation Details ->

* Can assign names to the ends of the
association to give further information

Team Employee
-gro
grotip -Name: string

-members: Employee w +ID: long
1 #Salary: double

-adfaf: bool

+getNamd) : string

+setNamg)

-calcinternalStuffin x : byte, in y : decima)

2MERTXE

IStatic vs. Dynamic Design ->

* Static design describes code structure and object
relations

— Class relations
— Objects at design time
— Doesn’t change
* Dynamic design shows communication between
objects
— Similarity to class relations
— Can follow sequences of events
— May change depending upon execution scenario
— Called Object Diagrams

2MERTXE

I Object Diagrams ->

* Shows 1nstances of Class Diagrams and links
among them

— An object diagram 1s a snapshot of the objects in a
system
* At a point 1n time
* With a selected focus

— Interactions — Sequence diagram
— Message passing — Collaboration diagram

— Operation — Deployment diagram

2MERTXE

I Object Diagrams

* Format is

— Instance name : Class name
— Attributes and Values

— Example:

M1: Menu window €

—————————————————————

visible=true)
position=(10,23) s
size=160

2MERTXE

I Objects and Links

c: Company

di : Department d2 : Department

name = “Sales” ename = “R&D"
link

d3 : Department attribute value

object —e
name = “US Sales”

anonymous object
manager
p : Person / (
: Contactinformation

name = “Erin” ‘(
employeelD = 4362
title = “VP of Sales”

address = “1472 Miller St.”

Can add association type and also message type
2MERTXE

IPackage Diagrams ->

* To organize complex class diagrams, you can group
classes into packages. A package 1s a collection of
logically related UML elements

* Notation
— Packages appear as rectangles with small tabs at the top.
— The package name 1s on the tab or inside the rectangle.

— The dotted arrows are dependencies. One package depends
on another if changes in the other could possibly force
changes in the first.

— Packages are the basic grouping construct with which you
may organize UML models to increase their readability

2MERTXE

I Package Example ->

A\

DispatcherInterfac4

-—
~
- ~
~

NS N

Notification

IncidentManagement

2MERTXE

IMore Package Examples ->

I [

Studerts Academic +— Example #1
Employees

1. / Domain
Mailing List
Manager Orders Customers
Example #2 ——» Mailing List Ul Mailing List

- — —= Manager

2MERTXE

I Interaction Diagrams ->

 Interaction diagrams are dynamic -- they
describe how objects collaborate.

* A Sequence Diagram:
— Indicates what messages are sent and when
— Time progresses from top to bottom
— Objects 1involved are listed left to right

— Messages are sent left to right between objects in
sequence

2MERTXE

I Sequence Diagram Format ->

Actor from
Use Case Objects
\\A% T
 Galas . Process ltem - Stock ltem
il Order Scraen

g . .
- rh I I
1 , :
| I
ind ' I
| e Gel quantity 1
: : /; 2 }n
Activation = - 3 .
= Sl .
": _________ I I
4 | I
T | |
-] | 1

I - i

A
Lifeline —~ Calls = Solid Lines

Returns = Dashed Lines SMERTXE

Sequence Diagram:
Destruction

2

aA

|
I creato:: - B

1

+_EEE.UIL__.

| <=des’rrny»

|

! Q Shows Destruction of b
| —)

| (and Construction)

2MERTXE

Sequence Diagram:
Timing

2

Slanted Lines show propagation delay of messages
Good for modeling real-time systems

Caller User FPhone: Tela ncle:lser

1 I

—ofthook |

I

|

|

|

- dial tone- - :
——eRal12345) |
rin ———dog
L

If messages cross this 1s usually problematic — race conditions)
2MERTXE

Sequence Example:
Alarm System

2

* When the alarm goes off, it rings the alarm, puts a
message on the display, notifies the monitoring

SCTVICC
s Sensor ~Lwent s User _Acoustic M-::mt-::nn
| > gispl
Isplay . display N
1]
- |
L1 ring |
p—
signal
.f:— EE—
! |

2MERTXE

Sequence Diagram:
Example

Hotel Reservation

object >

window
Llserinterface

makeReservationdvoid |
I

aChain
HotelChain

S«

%\ message

deletion

==

makeReseration(void

aHotel
Haotel

e

activation bar

—— lifeline

|
—
|

0%
N —

—h.

iteration

t each day] isRoom=availahled:hoolean

Ffﬂrﬂ'ﬁﬁm
[isRoom]

aReservation
Feservation

creation Z —

MIE_‘\X

"-\—______

a reservation
canfirmatian.

If 3 room is available for
each day of the stay, make

and send a

—F..

aMotice
Canfirmation

]

_'r

| :
ZIWVICRN I AL

ICollaboration Diagram_)

* (Collaboration Diagrams show similar information to
sequence diagrams, except that the vertical sequence
1s missing. In 1ts place are:

— Object Links - solid lines between the objects that interact

— On the links are Messages - arrows with one or more
message name that show the direction and names of the
messages sent between objects

* Emphasis on static links as opposed to sequence in
the sequence diagram

2MERTXE

ICollaboration Diagram_)

4: Hello? 5.
- =
You:User Aunt:User Elevator
1. Go up
\: off hook /
2.1:ri .
\\‘1 - dial tone / fng _ 3: Close
\2: dial ’/2.1 A: off hook Cabil _Door
‘\3: connect /3 connect
2: Turn on
Phone: TS _Light

2MERTXE

Activity Diagrams

* Fancy flowchart

— Displays the flow of activities involved in a single process
— States

* Describe what is being processed

* Indicated by boxes with rounded corners
— Swim lanes

* Indicates which object is responsible for what activity
— Branch

* Transition that branch

* Indicated by a diamond
— Fork

* Transition forking into parallel activities

* Indicated by solid bars
— Start and End

o ®

2MERTXE

I Sample Activity Diagram ->

* Ordering System s

Begin Crder

* May need multiple
diagrams from other
points of view

Add ltem

[More lt2ms]

Calculate Total

Confirm Order

1205

Place Order

=MERTXE

Activity Diagram:
Example

swimlane
__-7‘““————— -
Custarmner ATM Machine “Bank
+—— siart
Inser card
activity
Enterpin 3 Authorize If.gz.-.:nm* expression

branch
[Irvealicd PIM)

lid PIM 5‘
Enter amount peali]
-
{_ Check account halance _)
[halarce == amnunt%[balance = amounti]

I { Dehitaccount

.
C Take money fram slot)

Show balance

merge "y

Eject card

® <« end 2MERTXE

IState Transition Diagrams_)

* Fancy version of a DFA

« Shows the possible states of the object and the
transitions that cause a change in state

— 1.€. how incoming calls change the state

» Notation
— States are rounded rectangles

— Transitions are arrows from one state to another. Events or
conditions that trigger transitions are written beside the
arrows.

— Initial and Final States indicated by circles as in the
Activity Diagram

 Final state terminates the action; may have multiple final states

2MERTXE

I State Representation ->

* The set of properties and values describing the object
in a well defined instant are characterized by

— Name

— Activities (executed 1nside the state)
* Do/ activity

— Actions (executed at state entry or exit)
* Entry/ action
 EXxit/ action

— Actions executed due to an event
* Event [Condition] / Action “Send Event

2MERTXE

INotation for States

On event/

k‘x‘k 4 Typing Password '\

entry/ set echo off
exit/ set echo on
get(char)/ store char

\. S

2

,[Working]

- name - ldaz build piecEJ

H

activities

2MERTXE

Simple Transition
Example

2

event
" Typing Password
entry/ set echo off ¢ ¥ r Idle]
exit/ set echo on Request/
get (char)/ store char | display “enter password”
. J >
action

2MERTXE

Simple State Examples...

Video Recorder

TogglePower

.

TogglePower

“VCR”
TV Control .r‘u'R Control
—F

“OnOff*I*TV.TogglePower “OnOff"/*Video F{ecnrder.Tngglanwe]

TV

Remote Control

TogglePower
Off P On

TogglePower

2MERTXE

State Transition Example

initial state

Validating PIN/SSN

ICursorto 55M

~ [Rejecting :
- Getting SoM
Cancelicuit vt
— RetryiClear SSM, PIN entries event guard activity
X) Fress key[keyt tah]IDiSprgy ke

[notwalid)/Display error message

AN

Fress tab OFR move cursarto PIM
fieldfZursar to FIM

transition — Fress shifi-tab OR move cursor to
SoM field/Cursor to S5

final state

(Getting PIN e State

=

. Validating ‘]

valid)Start transaction | 0 Yaldate SSMand FIN subrmit S,
. action

Press key[key = shift-tah)/Displaydot

2MERTXE

State Charts:
LLocal Variables

2

« State Diagrams can also store their own local
variables, do processing on them

» Library example counting books checked out
and returned

Borrow /

N = N+1
Start / N=0 Stop / N=0
Return /
N=N-1

2MERTXE

I Component Diagrams ->

e Shows various components in a system and their
dependencies, interfaces

* Explains the structure of a system

* Usually a physical collection of classes
— Similar to a Package Diagram in that both are used to
group elements into logical structures

— With Component Diagrams all of the model elements are
private with a public interface whereas Package diagrams

only display public items.

2MERTXE

I Component Diagram Notation

2

* Components are shown as rectangles with two

tabs at the upper left

Component

» Dashed arrows indicate dependencies

e Circle and solid line indicates an interface to

the component

% Body

T

2MERTXE

Component Example:
Interfaces

* Restaurant
ordering
+Begin Order() +Create Order()
System +Add ltem()

+Zalect tem()
+Zelect Cluantity() O |Order
° D f +Check Stock() _

e lne +Enter Special Instructions()
+Calculate lterm Tatall)

lnterfaces ==user interface==
f t O Order Confirmation Form o I[RestaurantSystem.
1ITSU —
+Calculate Total() +Place Order)
Comes +Confirm Order() +Check Stock()

+Calculate Taxl)
+Calculate Hestaurant Total()

from ClaSS +Calculate Delivery Chargel) 0 TaxEngine

+Calculate Grand Total()

Dlagrams <<usger interface=x> +Calculatel)

Errar Form

<zser interfaces:= [OrderSystem
O Order ltem Faorm O f

+4dd Item()
+Place Order()

+Display Error Messagel)

SMERTXE

Component Example:
Components

2

» Graphical depiction of components

ceuser intarfacess <<user interfaces> .
0 Order Confirmation Farm o <<usef interface>>
Order ltern Farm Errar Farm

—
—

L1

Hestaurant Service Weh

ICrderSystem O [Order

1
Order System
—] T IRestaurantSystem.
—
g

—
—

NN—o

staurant System

]
—] Tax System —'_o [TaxEngine

N

2MERTXE

Component Example:
Linking

2

* Linking components with dependencies

() <cuserinterface>> <<user interface>> _
Order Confirmation Farm o <user interface>>
Order lterm Farm T

Etrar Faorm

W h
::

[}
?5 IOrderSystem b |Order

1
Order System fea -
1)T IRestaurantSystem.
]
1
'
: - -
estaurant System
<Y = y

N1

]
— Tax Systern —0 [TaxEngine

2MERTXE

I Deployment Diagrams ->

* Shows the physical architecture of the hardware and
software of the deployed system

 Nodes

— Typically contain components or packages

— Usually some kind of computational unit; e.g. machine or
device (physical or logical)

* Physical relationships among software and hardware
in a delivered systems

— Explains how a system interacts with the external
environment

2MERTXE

I Deployment Examples ->

Cliamt & PC

connection

an'ar

dCCess

Disk ‘

#
-,
-
Cllent PG
% J

2MERTXE

IDeployment Example

Bank Server Real Estate Server
==Database~» g Martgage Application Listing P
CustomerDB % — = MultipleListings
]

A | i @ '\
1
_______ // component
IMartgagespplication
M,

interface IListing
_o—'.-lli"
i ’__,-”
I node -
: 7 T dependency
-
i — ‘,.‘/ connection
i aPC -~

TCRIP % Buyerlnterface TCRIP

Often the Component Diagram is combined with the Deployme)
2MERTXE

I Summary and Tools ->

 UML 1s a modeling language that can be used independent of
development
* Adopted by OMG and notation of choice for visual modeling
— http://www.omg.org/uml/
e (Creating and modifying UML diagrams can be labor and time
intensive.
« Lots of tools exist to help
— Tools help keep diagrams, code in sync

— Repository for a complete software development project
— Examples tools Microsoft Visio, Dia

2MERTXE

Thank You

	Introduction to UML
	What is UML?
	Why use UML
	Brief History
	History of UML
	Contributions to UML
	Systems, Models and Views
	Slide 8
	UML Models, Views, Diagrams
	Models, Views, Diagrams
	How Many Views?
	UML: First Pass
	Basic Modeling Steps
	UML Baseline
	Use Case Diagrams
	Actors
	Use Case
	Use Case Diagram: Example
	The <<extends>> Relationship
	The <<includes>> Relationship
	Use Cases are useful to…
	Use Case Diagrams: Summary
	Class Diagrams
	Class Diagram Perspectives
	Classes – Not Just for Code
	Instances
	UML Class Notation
	Slide 28
	Binary Association
	Unary Association
	Aggregation
	Composition
	Inheritance
	UML Multiplicities
	UML Class Example
	Association Details
	Static vs. Dynamic Design
	Object Diagrams
	Slide 39
	Objects and Links
	Package Diagrams
	Package Example
	More Package Examples
	Interaction Diagrams
	Sequence Diagram Format
	Sequence Diagram : Destruction
	Sequence Diagram : Timing
	Sequence Example: Alarm System
	Sequence Diagram Example
	Collaboration Diagram
	Slide 51
	Activity Diagrams
	Sample Activity Diagram
	Activity Diagram Example
	State Transition Diagrams
	State Representation
	Notation for States
	Simple Transition Example
	More Simple State Examples
	State Transition Example
	State Charts – Local Variables
	Component Diagrams
	Component Diagram Notation
	Component Example - Interfaces
	Component Example - Components
	Component Example - Linking
	Deployment Diagrams
	Some Deployment Examples
	Deployment Example
	Summary and Tools
	Slide 71

