
Team Emertxe

Introduction to UML

What is UML?

• Unified Modeling Language
– OMG Standard, Object Management Group
– Based on work from Booch, Rumbaugh, Jacobson

• UML is a modeling language to express and
design documents, software
– Particularly useful for OO design
– Not a process, but some have been proposed using

UML
– Independent of implementation language

Why use UML

• Open Standard, Graphical notation for
– Specifying, visualizing, constructing, and documenting software

systems

• Language can be used from general initial design to very
specific detailed design across the entire software
development lifecycle

• Increase understanding/communication of product to
customers and developers

• Support for diverse application areas
• Support for UML in many software packages today (e.g.

Rational, plugins for popular IDE’s like NetBeans, Eclipse)
• Based upon experience and needs of the user community

Brief History

• Inundated with methodologies in early 90’s
– Booch, Jacobson, Yourden, Rumbaugh

• Booch, Jacobson merged methods 1994

• Rumbaugh joined 1995

• 1997 UML 1.1 from OMG includes input from
others, e.g. Yourden

• UML v2.0 current version

History of UML

Contributions to UML

Systems, Models and Views

• A model is an abstraction describing a subset of a system
• A view depicts selected aspects of a model
• A notation is a set of graphical or textual rules for depicting

views
• Views and models of a single system may overlap each other

Examples:
• System: Aircraft
• Models: Flight simulator, scale model
• Views: All blueprints, electrical wiring, fuel system

Systems, Models and Views

System
View 1

Model 2
View 2

View 3

Model 1

Aircraft

 Flightsimulator

Scale Model

Blueprints

Electrical
Wiring

Models, Views, Diagrams

• UML is a multi-diagrammatic language
– Each diagram is a view into a model

• Diagram presented from the aspect of a particular stakeholder
• Provides a partial representation of the system
• Is semantically consistent with other views

– Example views

Models, Views, Diagrams

How Many Views?

• Views should to fit the context
– Not all systems require all views

– Single processor: drop deployment view

– Single process: drop process view

– Very small program: drop implementation view

• A system might need additional views
– Data view, security view, …

UML: First Pass

• You can model 80% of most problems by
using about 20 % UML

• We only cover the 20% here

Basic Modeling Steps

• Use Cases
– Capture requirements

• Domain Model
– Capture process, key classes

• Design Model
– Capture details and behaviors of use cases and

domain objects
– Add classes that do the work and define the

architecture

UML Baseline

• Use Case Diagrams
• Class Diagrams
• Package Diagrams
• Interaction Diagrams

– Sequence

– Collaboration

• Activity Diagrams
• State Transition Diagrams

• Deployment Diagrams

Use Case Diagrams

• Used during requirements
elicitation to represent external
behavior

• Actors represent roles, that is, a
type of user of the system

• Use cases represent a sequence of
interaction for a type of
functionality; summary of
scenarios

• The use case model is the set of all
use cases. It is a complete
description of the functionality of
the system and its environment

Passenger

PurchaseTicket

Actors

• An actor models an external entity which
communicates with the system:
– User

– External system

– Physical environment

• An actor has a unique name and an optional
description.

• Examples:
– Passenger: A person in the train

– GPS satellite: Provides the system with GPS
coordinates

Passenger

Use Case

A use case represents a class of functionality
provided by the system as an event flow.

A use case consists of:

• Unique name

• Participating actors

• Entry conditions

• Flow of events

• Exit conditions

• Special requirements

PurchaseTicket

Use Case Diagram:
Example

Name: Purchase ticket

Participating actor: Passenger

Entry condition:
• Passenger standing in front of

ticket distributor.
• Passenger has sufficient

money to purchase ticket.

Exit condition:
• Passenger has ticket.

Event flow:

1. Passenger selects the number
of zones to be traveled.

2. Distributor displays the amount
due.

3. Passenger inserts money, of at
least the amount due.

4. Distributor returns change.

5. Distributor issues ticket.

Anything missing?

Exceptional cases!

The <<extends>>
Relationship

• <<extends>> relationships represent
exceptional or seldom invoked cases.

• The exceptional event flows are
factored out of the main event flow for
clarity.

• Use cases representing exceptional
flows can extend more than one use
case.

• The direction of a <<extends>>
relationship is to the extended use case

Passenger

PurchaseTicket

TimeOut

<<extends>>

NoChange

<<extends>>OutOfOrder

<<extends>>

Cancel

<<extends>>

The <<includes>>
Relationship

• <<includes>> relationship
represents behavior that is
factored out of the use case.

• <<includes>> behavior is
factored out for reuse, not because
it is an exception.

• The direction of a
<<includes>> relationship is to
the using use case (unlike
<<extends>> relationships).

Passenger

PurchaseSingleTicket

PurchaseMultiCard

NoChange

<<extends>>

Cancel

<<extends>>

<<includes>>

CollectMoney

<<includes>>

Use Cases are useful to…

• Determining requirements
– New use cases often generate new requirements as the

system is analyzed and the design takes shape.

• Communicating with clients
– Their notational simplicity makes use case diagrams a good

way for developers to communicate with clients.

• Generating test cases
– The collection of scenarios for a use case may suggest a

suite of test cases for those scenarios.

Use Case Diagrams:
Summary

• Use case diagrams represent external behavior

• Use case diagrams are useful as an index into
the use cases

• Use case descriptions provide meat of model,
not the use case diagrams.

• All use cases need to be described for the
model to be useful.

Class Diagrams

• Gives an overview of a system by showing its
classes and the relationships among them.
– Class diagrams are static
– they display what interacts but not what happens

when they do interact

• Also shows attributes and operations of each
class

• Good way to describe the overall architecture
of system components

Class Diagram:
Perspectives

• We draw Class Diagrams under three
perspectives
– Conceptual

• Software independent

• Language independent

– Specification
• Focus on the interfaces of the software

– Implementation
• Focus on the implementation of the software

Classes:
Not Just for Code

• A class represent a concept
• A class encapsulates state (attributes) and behavior (operations).
• Each attribute has a type.
• Each operation has a signature.
• The class name is the only mandatory information.

zone2price
getZones()
getPrice()

TariffSchedule

Table zone2price
Enumeration getZones()
Price getPrice(Zone)

TariffSchedule

Name

Attributes

Operations

Signature

TariffSchedule

Instances

• An instance represents a phenomenon.

• The name of an instance is underlined and can
contain the class of the instance.

• The attributes are represented with their values.

zone2price = {
{‘1’, .20},
{‘2’, .40},
{‘3’, .60}}

 tarif_1974:TariffSchedule

UML Class Notation

• A class is a rectangle divided into three parts
– Class name
– Class attributes (i.e. data members, variables)
– Class operations (i.e. methods)

• Modifiers
– Private: -
– Public: +
– Protected: #
– Static: Underlined (i.e. shared among all members of the class)

• Abstract class: Name in italics

UML Class Notation

• Lines or arrows between classes indicate relationships
– Association

• A relationship between instances of two classes, where one class must know
about the other to do its work, e.g. client communicates to server

• indicated by a straight line or arrow
– Aggregation

• An association where one class belongs to a collection, e.g. instructor part of
Faculty

• Indicated by an empty diamond on the side of the collection
– Composition

• Strong form of Aggregation
• Lifetime control; components cannot exist without the aggregate
• Indicated by a solid diamond on the side of the collection

– Inheritance
• An inheritance link indicating one class a superclass relationship, e.g. bird is

part of mammal
• Indicated by triangle pointing to superclass

Binary Association

myB.service(); myA.doSomething();

Binary Association: Both entities “Know About” each other

Optionally, may create an Associate Class

Unary Association

A knows about B, but B knows nothing about A

Arrow points in direction
of the dependency

myB.service();

Aggregation

Aggregation is an association with a “collection-member” relationship

void doSomething()
 aModule.service();

Hollow diamond on
the Collection side

No sole ownership implied

Composition

Composition is Aggregation with:
Lifetime Control (owner controls construction, destruction)
Part object may belong to only one whole object

Filled diamond on
side of the Collection

 members[0] =
 new Employee();

 …

 delete members[0];

Inheritance

Standard concept of inheritance

class B() extends A

…

Base Class

Derived Class

UML Multiplicities

Multiplicities Meaning

0..1
zero or one instance. The notation n . . m

indicates n to m instances.

0..* or *
no limit on the number of instances

(including none).

1 exactly one instance

1..* at least one instance

Links on associations to specify more details about the relationship

UML Class Example

Association Details

• Can assign names to the ends of the
association to give further information

+getName() : string
+setName()
-calcInternalStuff(in x : byte, in y : decimal)

-Name : string
+ID : long
#Salary : double
-adfaf : bool

Employee

-members : Employee

Team -group

1

-individual

*

Static vs. Dynamic Design

• Static design describes code structure and object
relations
– Class relations
– Objects at design time
– Doesn’t change

• Dynamic design shows communication between
objects
– Similarity to class relations
– Can follow sequences of events
– May change depending upon execution scenario
– Called Object Diagrams

Object Diagrams

• Shows instances of Class Diagrams and links
among them
– An object diagram is a snapshot of the objects in a

system
• At a point in time

• With a selected focus
– Interactions – Sequence diagram

– Message passing – Collaboration diagram

– Operation – Deployment diagram

Object Diagrams

• Format is
– Instance name : Class name

– Attributes and Values

– Example:

Objects and Links

Can add association type and also message type

Package Diagrams

• To organize complex class diagrams, you can group
classes into packages. A package is a collection of
logically related UML elements

• Notation
– Packages appear as rectangles with small tabs at the top.
– The package name is on the tab or inside the rectangle.
– The dotted arrows are dependencies. One package depends

on another if changes in the other could possibly force
changes in the first.

– Packages are the basic grouping construct with which you
may organize UML models to increase their readability

Package Example

DispatcherInterface

Notification IncidentManagement

More Package Examples

Interaction Diagrams

• Interaction diagrams are dynamic -- they
describe how objects collaborate.

• A Sequence Diagram:
– Indicates what messages are sent and when
– Time progresses from top to bottom
– Objects involved are listed left to right
– Messages are sent left to right between objects in

sequence

Sequence Diagram Format

Actor from
Use Case Objects

1

2
3

4

Lifeline Calls = Solid Lines
Returns = Dashed Lines

Activation

Sequence Diagram:
Destruction

Shows Destruction of b
(and Construction)

Sequence Diagram:
Timing

Slanted Lines show propagation delay of messages
Good for modeling real-time systems

If messages cross this is usually problematic – race conditions

Sequence Example:
Alarm System

• When the alarm goes off, it rings the alarm, puts a
message on the display, notifies the monitoring
service

Sequence Diagram:
Example

Hotel Reservation

Collaboration Diagram

• Collaboration Diagrams show similar information to
sequence diagrams, except that the vertical sequence
is missing. In its place are:
– Object Links - solid lines between the objects that interact
– On the links are Messages - arrows with one or more

message name that show the direction and names of the
messages sent between objects

• Emphasis on static links as opposed to sequence in
the sequence diagram

Collaboration Diagram

Activity Diagrams

• Fancy flowchart
– Displays the flow of activities involved in a single process
– States

• Describe what is being processed
• Indicated by boxes with rounded corners

– Swim lanes
• Indicates which object is responsible for what activity

– Branch
• Transition that branch
• Indicated by a diamond

– Fork
• Transition forking into parallel activities
• Indicated by solid bars

– Start and End

Sample Activity Diagram

• Ordering System
• May need multiple

diagrams from other
points of view

Activity Diagram:
Example

State Transition Diagrams

• Fancy version of a DFA
• Shows the possible states of the object and the

transitions that cause a change in state
– i.e. how incoming calls change the state

• Notation
– States are rounded rectangles
– Transitions are arrows from one state to another. Events or

conditions that trigger transitions are written beside the
arrows.

– Initial and Final States indicated by circles as in the
Activity Diagram

• Final state terminates the action; may have multiple final states

State Representation

• The set of properties and values describing the object
in a well defined instant are characterized by
– Name
– Activities (executed inside the state)

• Do/ activity

– Actions (executed at state entry or exit)
• Entry/ action
• Exit/ action

– Actions executed due to an event
• Event [Condition] / Action ^Send Event

Notation for States

Simple Transition
Example

Simple State Examples...

State Transition Example

Validating PIN/SSN

State Charts:
Local Variables

• State Diagrams can also store their own local
variables, do processing on them

• Library example counting books checked out
and returned

Component Diagrams

• Shows various components in a system and their
dependencies, interfaces

• Explains the structure of a system
• Usually a physical collection of classes

– Similar to a Package Diagram in that both are used to
group elements into logical structures

– With Component Diagrams all of the model elements are
private with a public interface whereas Package diagrams
only display public items.

Component Diagram Notation

• Components are shown as rectangles with two
tabs at the upper left

• Dashed arrows indicate dependencies
• Circle and solid line indicates an interface to

the component

Component Example:
Interfaces

• Restaurant
ordering
system

• Define
interfaces
first –
comes
from Class
Diagrams

Component Example:
Components

• Graphical depiction of components

Component Example:
Linking

• Linking components with dependencies

Deployment Diagrams

• Shows the physical architecture of the hardware and
software of the deployed system

• Nodes
– Typically contain components or packages
– Usually some kind of computational unit; e.g. machine or

device (physical or logical)

• Physical relationships among software and hardware
in a delivered systems
– Explains how a system interacts with the external

environment

Deployment Examples

Deployment Example

Often the Component Diagram is combined with the Deployment

Summary and Tools

• UML is a modeling language that can be used independent of
development

• Adopted by OMG and notation of choice for visual modeling
– http://www.omg.org/uml/

• Creating and modifying UML diagrams can be labor and time
intensive.

• Lots of tools exist to help
– Tools help keep diagrams, code in sync
– Repository for a complete software development project
– Examples tools Microsoft Visio, Dia

Thank You

	Introduction to UML
	What is UML?
	Why use UML
	Brief History
	History of UML
	Contributions to UML
	Systems, Models and Views
	Slide 8
	UML Models, Views, Diagrams
	Models, Views, Diagrams
	How Many Views?
	UML: First Pass
	Basic Modeling Steps
	UML Baseline
	Use Case Diagrams
	Actors
	Use Case
	Use Case Diagram: Example
	The <<extends>> Relationship
	The <<includes>> Relationship
	Use Cases are useful to…
	Use Case Diagrams: Summary
	Class Diagrams
	Class Diagram Perspectives
	Classes – Not Just for Code
	Instances
	UML Class Notation
	Slide 28
	Binary Association
	Unary Association
	Aggregation
	Composition
	Inheritance
	UML Multiplicities
	UML Class Example
	Association Details
	Static vs. Dynamic Design
	Object Diagrams
	Slide 39
	Objects and Links
	Package Diagrams
	Package Example
	More Package Examples
	Interaction Diagrams
	Sequence Diagram Format
	Sequence Diagram : Destruction
	Sequence Diagram : Timing
	Sequence Example: Alarm System
	Sequence Diagram Example
	Collaboration Diagram
	Slide 51
	Activity Diagrams
	Sample Activity Diagram
	Activity Diagram Example
	State Transition Diagrams
	State Representation
	Notation for States
	Simple Transition Example
	More Simple State Examples
	State Transition Example
	State Charts – Local Variables
	Component Diagrams
	Component Diagram Notation
	Component Example - Interfaces
	Component Example - Components
	Component Example - Linking
	Deployment Diagrams
	Some Deployment Examples
	Deployment Example
	Summary and Tools
	Slide 71

