
Object-oriented
programming - relations

Rafał Witkowski

2021



Relations

• Code reuse is one of the many benefits of OOP (object-oriented 
programming). Reusability is feasible because of the various types of 
relationships that can be implemented among classes. This 
presentation will demonstrate the types of relationships (from weak 
to strong) using Java code samples and the symbols in the UML 
(unified modeling language) class diagram.



Relations



Dependency (Using)

• Is a relationship when objects of a class work briefly with objects of 
another class. Normally, multiplicity doesn’t make sense on a 
dependency



Dependency - Java

class Move { 

public void Roll() { ... } 

}

class Player {

public void PerformAction(Move move) { 

move.Roll();

}

}



Association

• This relationship transpires when objects of one class know the 
objects of another class. The relationship can be one to one, one to 
many, many to one, or many to many. Moreover, objects can be 
created or deleted independently.



Association – java

public static void main (String[] args) {

Doctor doctorObj = new Doctor("Rick");

Patient patientObj = new Patient("Morty");

System.out.println(patientObj.getPatientName() +

" is a patient of " + doctorObj.getDoctorName());

}



Aggregation

• Is a "has-a" type relationship and is a one-way form of association. 
This relationship exists when a class owns but shares a reference to 
objects of another class.



Aggregation – java

class Address{

//code here

}

class StudentClass{

private Address studentAddress;

//code here

}

Public StudentClass(Address adres)

{

studentAddress = adres;

}



Composition

• Is a "part-of" type of relationship, and is a strong type of association. 
In other words, composition happens when a class owns & contains 
objects of another class



Composition – java

class Room {

//code here

}

class House {

private Room room;

//code here

}

Public House()

{

room = new Room();

}



Inheritance

• Is an "is-a" type of relationship. It's a mechanism that permits a class 
to acquire the properties and behavior of an existing class (or 
sometimes more classes, if the language allows multiple inheritance).



Interihence – java

class Vehicle {

//code here

}

class Car extends Vehicle {

//code here

}



Instantiation (generics)

• A generic class arises from a situation where the behavior of a class 
can be abstracted into something which is relevant to more than one 
type of state. The goal is to share the definition (in the class) of some 
behavior (i.e. the methods) across different data types.



Polymorphism

• For OO languages polymorphism is tied up with substitutability. We 
design methods and we write client code that can operate on a set of 
types. What is common about these types is that they are 
substitutable for each other.

• The idea that the code that is executed as the result of a message 
being sent depends on the class of the object that receives the 
message. Objects of different classes can react differently to being 
sent the same method in a message.


