Java Q&A column debuts! Page 1 of 10

Advertisement: Support JavaWorld, click here!

mwmd

Fasilig Tunostsn ™

r
F | [
FEATURED NEWS & JW ABOUT
May 1999 HOME TUTORIALS COLUMNS REVIEWS FORUM RESOURCES JW

Java Q&A column debuts!

The JavaWorld experts answer your pressing Java questions --
every week

Summary

JavaWorld's new weekly Java Q&A column features expert answers to your unbeatable
Java questions. In this inaugural installment, our Java experts turn their attention to
thread safety, race-condition bugs, running Java programs without the JDK runtime
environment, and dealing with inner classes. Plus: As a bonus for the Java Q&A
kickoff, we've included an in-depth look at RMI callbacks. Starting next month, we'll
publish two new Q&As each and every week. (3,500 words)

Index

Thread-safe design

Race-condition bugs

Run the Java program without the JDK runtime? Yes you can!
Inner classes

RMI callbacks

W elcome to the first installment of JavaWorld's newest resource for Java developers: the Java
Q&A column. If you're losing sleep over Java, start making a list of the questions that
plague you. Beginning in June, you'll be able to tune in weekly for answers from the Java experts
at Random Walk Computing -- Wall Street's leading Java consulting shop. They'll be on hand to
impart masterful answers to a variety of your challenging Java questions. And be sure to visit the
Java Q&A index page for links to previous Qs & As.

Call for Java questions
Do you have a burning Java question?

One whose answer would benefit not just you, but other JavaWorld readers? We've got

the experts to help. While we can't answer everyone's questions, our Java experts will

pick the most interesting and relevant questions for inclusion in upcoming Java Q&A
columns. To submit your questions to Java Q&A, e-mail javaga@javaworld.com

http://www.javaworld.com/javaworld/jw-05-1999/jw-05-javaga p.html 2006-03-05

Java Q&A column debuts! Page 2 of 10

Thread-safe design

Q- I would like to know how to write a thread-safe client/server program in Java. How
“ should I approach the threading? What sort of issues should I be aware of?

» Thread-safe programming is only necessary if you have data that can be modified by more

" than one thread at a time. In a client/server situation, usually the server has multiple clients.
If all those clients do is read data from the server, and if no other programs are modifying that
data, then you have nothing to worry about. But if those clients can change shared data on the
server, they must not be allowed to conflict with one another. Normally, if two clients try to change
shared data, you have to hope that the first client is able to finish with the data before the second
client begins to modify it. This situation is called racing.

Under these circumstances, the outcome depends on how the underlying scheduler happens to
allocate time to the various clients' requests. In the case of Java, one doesn't know what the
underlying scheduler's policies are (because they're platform-dependent, or natively implemented),
but even with a known scheduling policy, the actual allocation will depend on the availability of
various resources (typically I/O) and user inputs; therefore it is never readily predictable.

Thread-safe design replaces racing situations with choreographed access to shared data. In Java,
thread-safe design gets a lot of support from the underlying language (through synchronized
blocks) and the standard class library (through the wait/notify mechanism in Object).

The simplest way to make a thread-safe design is to use synchronized blocks so that only one
client can access the server at any one time. All other clients must wait until the server finishes
with that client. Obviously, such a solution doesn't scale well as more clients are added, since
clients will have to wait a long time for their turn to access the server.

In fact, if a poorly implemented server entered an infinite loop during a call by one client, then all
its other clients would wait forever. This is an example of a general problem called starvation,
which has to do with situations where a client never finishes its task because one or more other
clients have monopolized the resource it needs.

In general, a client shouldn't monopolize a resource that it isn't actively using. When a client has a
resource but then blocks while waiting for another resource (typically for I/0), Java will allow a
second client to access the server. This situation makes sense, and is often desirable, but must be
taken into account in the choreography since the first client may not actually have been done with
its task, and the second client may want to access the same resources. The way around this is for
the server design to use wait () and notify () calls within the synchronized blocks, so that the
various clients know when it's safe to proceed.

If resource A on the server is independent of resource B, it is reasonable for the server to allow one
client to use A at the same time that it allows another client to use B (rather than having the
second client wait for the first one to finish with A before it can use B). This situation is safe, as
long as A and B are really independent and given than they remain independent after subsequent
changes to the server. If A and B aren't truly independent, we can end up with what is called
deadlock, a situation in which the first client has A and also needs B, while the second client has B
and also needs A. This is a special case of starvation, in which the client shares responsibility for its
own starvation. Note that Oaks and Wong state in Java Threads that "Deadlock ... is the hardest
problem to solve in any threaded program.”

In summation, thread-safe programming seeks to maximize efficiency by eliminating racing
situations, while at the same time avoiding starvation situations.

http://www.javaworld.com/javaworld/jw-05-1999/jw-05-javaga p.html 2006-03-05

Java Q&A column debuts! Page 3 of 10

Resources

e Java Threads, Second Edition, Scott Oaks, Henry Wong, et al. (O'Reilly, 1999)
http://www1.fatbrain.com/asp/bookinfo/bookinfo.asp?theisbn=1565924185

Back to index

Race-condition bugs

Q- Why does the following code generate a NullPointerException?

public class SimpleApplet extends java.applet.Applet {
java.awt.Image art;
public void init () {
art = getlImage (getDocumentBase (), getParameter ("img")):;
}
public void paint (java.awt.Graphics g) {
g.drawImage (art, 0, 0, this);
}
}

A- Because art is null.

There is a race-condition (threading) bug in some older applet environments (the JVM and the
browser) such that an Applet's paint () method can be called before its init () method. The
workaround (aside from updating your environment) isto add if (art != null) before the call
to drawImage (). Once init () is called, the subsequent calls to paint () will work properly.

Of course, you'll need to make sure that SimpleApplet can find the image file; make sure
getDocumentBase () returns a valid URL, and that the HTML page is set up correctly (so that
getParameter () returns a valid image-file name).

Back to index

Run the Java program without the JDK runtime?
Yes you can!

Q- Can I run Java programs without the JDK runtime environment?

» Yes. Just as you can make standalone executables from C/C++ programs, you can also make

" standalone executables from Java source code. All that is required in either case is that you
have a compiler to convert the source code to binary machine code. For example, the IBM
VisualAge Java application development product has a High Performance Java Compiler built in,
which compiles Java to native code.

Of course, the resulting binaries can only run on the platform for which they were compiled, so
they lose the benefit of "platform independence" that has made Java so successful on the Internet
and in distributed multiplatform environments.

http://www.javaworld.com/javaworld/jw-05-1999/jw-05-javaga p.html 2006-03-05

Java Q&A column debuts! Page 4 of 10

Resources

e Download IBM's VisualAge product http://www.software.ibm.com/ad/vajava/

e The IBM alphaWorks Web site offers many useful Java-related products
http://www.alphaworks.ibm.com/

Back to index

Inner classes

Q- Is it possible to declare a class inside another class and to have the inner class
“ access the private variable of the main class?

- Certainly! Java 1.1 introduced the concept of inner classes to the Java language. Here's an
example of an inner class accessing a private data member of an enclosing class:

public class OuterClass {

private static String hiding = "You can't see me!";
public static class InnerClass {
public static void showMe () {

System.out.println (hiding) ;

}
}

public static void main (String args[]) {
InnerClass.showMe () ;

}

When run, this application will print out "You can't see me!"

Resources

e The Java Programming Language, Ken Arnold and James Gosling (Addison Wesley, 1996) The
official description of Java's inner classes; see "Appendix D" on the Sun home page for
updates to JDK 1.1 http://java.sun.com/docs/books/javaprog/firstedition/1.1Update.html

e "A look at inner classes," Chuck McManis (JavaWorld, October 1997) Java In-Depth
columnist Chuck McManis provides a more gentle introduction to the topic of inner classes
http://www.javaworld.com/javaworld/jw-10-1997/jw-10-indepth.html

e The Java Tutorial chapter on inner classes
http://java.sun.com/docs/books/tutorial/java/more/nested.html

Back to index

RMI callbacks

And here, at last, is our bonus question:

http://www.javaworld.com/javaworld/jw-05-1999/jw-05-javaga p.html 2006-03-05

Java Q&A column debuts! Page 5 of 10

Q: I have a problem with RMI callbacks. Specifically, my server program
successfully invokes a client method using callbacks. However, since the client
method executes on the server side in this case, how am I supposed to manipulate my
frontend AWT components from this method? Or is it not possible using RMI callbacks? I
need my frontend AWT components, such as Lists, to be updated with values upon
callback. Please explain.

« We've received quite a few questions regarding RMI this month, from specific issues such as
" yours to things like, "What's the ding-dong deal with this RMI stuff?" So we thought we'd use
your question as a jumping-off point to address RMI as a whole.

Here's the short answer to your question. It isn't correct to say that the client method executes on
the server. When using RMI to do callbacks to an application client, the client code doesn't execute
on the application server. Only the RMI proxy or stub class executes on the application's server
machine. The proxy invocation then arranges for the implementation class for the callback to
execute on the virtual machine of the application client. Therefore, since the RMI server logic and
the frontend AWT components coexist on the same VM, there's no problem in having an RMI
"callback" update information kept by AWT components.

Here's a much longer answer, with a sample program that illustrates what's going on:

It can be difficult when learning RMI to predict what's going on where. The trick is to remember
that for any RMI interface there will be two classes that execute: the proxy or stub class runs in
the VM of the caller, and the implementation class runs in the VM of the server.

The other thing to keep straight is that it can get confusing to label one VM the "client" and the
other the "server" for a particular application. In RMI terminology, any VM that initiates an RMI
invocation is the client, while any VM that receives and processes an RMI invocation is the server. I
find it easier to think of Java VMs as peers, any of which may act as RMI clients or servers
depending on the circumstances. Thus, in RMI there is really no such thing as a "callback" -- a
callback is really just an RMI invocation in the other direction! In the context of what many people
call client/server applications, it's helpful to designate the program that performs the user interface
functions as the frontend or application client, and the program that provides services to that GUI
as the backend or application server.

Using this new nomenclature, the question boils down to: Can RMI be used to allow a backend VM
to send update information to a frontend VM and have the frontend VM use that information to
update the information presented by the GUI? Put this way, the answer is: Yes!

Enough text. Let's look at this in code. Suppose we have a frontend whose mission in life is to
display a list of stock symbols and stock prices The job of the backend would then be to notice
when a stock's price changes and update the frontend with this information. Upon receiving such
an update, the frontend would replace the old price for that stock with the new price in the AWT-
based user interface.

Since you asked about updating the contents of AWT components using application server-side RMI
calls, we'll use an AWT List component in the GUI. It's not the prettiest way to do it, but it does
keep the code short. Apologies in advance for the flicker; this isn't a course on AWT programming!
RMI in a nutshell

Remote Method Invocation (RMI) allows Java programs to call other Java programs that execute in
other virtual machines, usually across a network.

The interface to an RMI server is defined by an interface that extends the java.rmi.Remote

http://www.javaworld.com/javaworld/jw-05-1999/jw-05-javaga p.html 2006-03-05

Java Q&A column debuts! Page 6 of 10

interface. All methods defined in remote interfaces must be declared to throw the
java.rmi.RemoteException.

RMI servers begin by replacing the default SecurityManager with an instance of
RMISecurityManager. To advertise available services, an instance of an RMI server object is
bound to a name in an RMI registry using the java.rmi.Naming.rebind method. The RMI
registry is established by running the rmiregistry daemon.

An RMI server implementation must extend the java.rmi.server.UnicastRemoteObject class
and must implement the remote interface for the server. Once this class is defined and compiled,
the rmic program is used to automatically generate stub and skeleton classes.

RMI clients use the java.rmi.Naming.Lookup method to obtain a reference to RMI server
objects.

The RMI interfaces

In any well-designed distributed system, the remote interfaces are the most important parts of the
system architecture, so let's start with them. The application server provides an interface called
StockInfo, which defines two method signatures: register () and unregister (). This is how
the frontend client tells the StockInfo backend server that the frontend client exists.

A registered StockInfo client must implement the StockUpdate interface and must pass a
reference to an object that implements the StockUpdate interface as the sole argument to the
register () method. Once the StockInfo server has a reference to the StockUpdate object,
the StockInfo server implementation may use the reference to talk to the frontend client at will.
It is this object that acts as the "callback" object in this architecture. Here is the StockInfo
interface:

package rmistock;import java.rmi.*;

public interface StockInfo extends java.rmi.Remote {
void register (StockUpdate o) throws RemoteException;
void unregister (StockUpdate o) throws RemoteException;

The StockUpdate interface looks like this:

package rmistock;import java.rmi.*;
public interface StockUpdate extends java.rmi.Remote ({
void update (String symbol, String price) throws RemoteException;

}

Once a client has registered with the StockInfo server, the server will periodically invoke the
update () method of the StockUpdate object. This means that the application client is itself an

RMI server and must be prepared to service RMI invocations at any time after it makes the
StockInfo.register call.

The StockInfo server
Now that the RMI interfaces are defined, there have to be implementation classes for those
interfaces. For the StockInfo interface, that class is called StockInfoImpl. The class has three

responsibilities:

http://www.javaworld.com/javaworld/jw-05-1999/jw-05-javaga p.html 2006-03-05

Java Q&A column debuts! Page 7 of 10

1. To implement the StockInfo interface.

2. To take care of the mainline chores of starting and registering an object as a server for the
StockInfo interface that will name rmistock.StockInfo.

3. To implement a background thread that obtains stock symbols and prices, and notifies each
registered client of any change in price for a stock symbol. Implementing the StockInfo
interface is very simple: The register () method takes the StockUpdate instance passed
to it and stores it uniquely in a private Vector. The unregister () method deletes the
StockUpdate instance from the Vector. Notice that these two methods are synchronized to

avoid problems that result from the contention of multiple invocations trying to
simultaneously access the Vector of StockUpdate instances.

Here are the implementations of the StockInfo interface methods:

public synchronized void register (StockUpdate o) throws RemoteException {

if (! (clients.contains(o))) {
clients.addElement (o) ;
System.out.println ("Registered new client " + 0);

}
}

public synchronized void unregister (StockUpdate o) throws RemoteException {

1f (clients.removeElement (o)) {
System.out.println ("Unregistered client " + 0);
} else {
System.out.println ("unregister: client " + o + "wasn't registered.");

}

The StockInfoImpl server mainline-code creates an RMI registry on TCP port 5001, instantiates
a StockInfoImpl object, registers that object with the RMI registry, and then creates the
background stock-price update thread and starts it running:

public static void main(String args[]) {
System.setSecurityManager (new RMISecurityManager())
try |

LocateRegistry.createRegistry (5001) ;

StockInfoImpl sii = new StockInfolmpl();

Naming.rebind ("//:5001/rmistock.StockInfo", sii);

System.out.println ("StockInfoImpl registered and ready");

Thread updateThread = new Thread(sii, "StockInfoUpdate");

updateThread.start ()
} catch (Exception e) {

e.printStackTrace();

4

}

The price update thread implements a simple and not particularly realistic simulation of an equities
market. It knows about two stocks: IBM and SUN, and simply increments their prices in lockstep
every second from $5 to $25 in quarter-point steps, dropping precipitously back to $5 when the
price hits $25. Every time the price changes, the price update thread iterates through the saved

http://www.javaworld.com/javaworld/jw-05-1999/jw-05-javaga p.html 2006-03-05

Java Q&A column debuts! Page 8 of 10

Vector of StockUpdate references. It is here that the callback is performed via the update ()
method:

StockUpdate client = (StockUpdate) e.nextElement();
try {
client.update (symbol, "" + price);
} catch (RemoteException ex) {
try A
unregister (client);
} catch (RemoteException rex) {

}

The code that executes here in the backend's VM isn't the actual implementation of the
StockUpdate interface's update () method, but rather a proxy method that serializes the symbol
and price strings back across to the frontend VM. On the frontend side, those serialized strings
are turned back into Java objects and then passed to the implementation method, which then
executes on the frontend's VM. We'll see what that implementation does when we step through the
frontend code below.

Look at the code in the catch clause -- this is triggered when a frontend VM terminates. The
update () method throws a java.rmi.RemoteException. This catch clause uses the exception

as an opportunity to unregister the client so that future iterations of the price update thread don't
bother to try to contact that application client again. The try/catch around the unregister calls

is just for form's sake: unregister is really supposed to be invoked remotely, but here we use it
locally so there's no possibility of a RemoteException being raised.

The StockUpdate GUI client
The frontend component of this system is implemented in two classes: StockWatcherGUI and
StockList.

StockWatcherGUI handles the mainline code for the GUI -- it sets up an AWT frame, and inserts
a StockList object into the frame. It also sets up the frontend VM as an RMI server and
implementation for the StockUpdate interface. Since the frontend always passes a reference to
the StockUpdate-implementing object directly to the backend as an argument to the register
() method, there is no need to register the StockUpdate instance in the RMI registry -- no one

ever has to look them up. The mainline code, however, does look up the instance reference bound
to the rmistock.StockInfo name in the RMI registry for later use. The implementation of the
StockUpdate interface is the update () method of this StockWatcherGUI class.

public synchronized void update (String symbol, String price) throws
RemoteException {

1l.updateStock (symbol, price); // 1 is an AWT component
}

Notice again that it is synchronized -- even though in this system it is unlikely that we'll get more
than one update call coming in at once, that's not guaranteed to be the interface definition, and a
good RMI server must be ready to operate in a multithreaded environment. This method will
execute in the frontend's VM, and it has access to the AWT components of the StockWatcherGUI.
Once we're in this method, it's child's play to update the AWT component. In fact, all this method

http://www.javaworld.com/javaworld/jw-05-1999/jw-05-javaga p.html 2006-03-05

Java Q&A column debuts! Page 9 of 10

does is forward the call to our StockList AWT component via the StockList's updateStock
method. The StockList component is a subclass of java.awt.List, so a StockList object is
an AWT component. The updateStock method directly modifies the string elements displayed in
the list box, formatting them with the incoming stock symbols and prices.

public synchronized void updateStock (String symbol, String price) {
int 1 = 0;
for (i = 0; 1 < stocks.length; i++) {
if (stocks[i].equals(symbol)) break;
}
if (i >= stocks.length) return;
replaceltem(formatStock (symbol, price), 1i):;

That's pretty much all there is to it. The complete code, along with build and run scripts for
Windows is at jw-05-javaqga.zip. You have to unpack the zip file and then run the scripts from the
RMI subdirectory. Figure 1 shows a diagram of where each of the objects exist at runtime and how
the invocations flow between each of these objects in this RMI-based system.

StockList
updateStock{IBM,T.25)

reglster() update({IBM,7.25)

StockWatcherGUI

register(this)

register() update{lBM,7.25)

register()

update{IBM,T 25}

register{this) —p»
update(IEM,7.25)

Front End JVM BackEnd JVM
Application Client Application Server

Figure 1. Objects and interactions in the rmistock example

RMI ORE

RMI ORE

http://www.javaworld.com/javaworld/jw-05-1999/jw-05-javaga p.html 2006-03-05

Java Q&A column debuts! Page 10 of 10

Just to prove to yourself that callback code actually executes on the front end, load the class files
on two separate machine. On the machine that will be the back end, delete the
StockWatcherGUI.class and StockWatcherGUI Skel.class files so that the server doesn't

have access to them at all. All it needs is the StockWatcherGUI_ Stub.class file -- this is the
proxy class itself that was generated by rmic.

Resources

e Download the complete code, along with build and run scripts for Windows. You'll have to
unpack the zip file and then run the scripts from the RMI subdirectory jw-05-javaqga.zip

e "Increase the functionality in your distributed client/server apps," by Michael Shoffner
(JavaWorld, October 1997). Step by Step columnist Michael Shoffner provides a good
introduction to RMI http://www.javaworld.com/javaworld/jw-10-1997/jw-10-step.html

¢ "Networking our whiteboard with Java 1.1," by Merlin Hughes (JavaWorld, December 1997).
Step by Step columnist Merlin Hughes delivers another perspective on RMI, including a
design pattern that helps it all seem more automatic
http://www.javaworld.com/javaworld/jw-12-1997/jw-12-step.html

e Sun's RMI Web page offers basic and detailed information on RMI
http://java.sun.com/products/jdk/rmi/

Back to index

About the author

Random Walk Computing is the largest Java/CORBA consulting boutique in New York, focusing on
solutions for the financial enterprise. Known for their leading-edge Java expertise, Random Walk
consultants publish and speak about Java in some of the most respected forums in the world. .

Advertisement: Support JavaWorld, click here!

flavallild | po you like technology?

Fouilng Tingaadiza

[

HOME | FEATURED TUTORIALS | COLUMNS | NEWS & REVIEWS | FORUM | JW RESOURCES | ABOUT JW | FEEDBACK

Copyright © 2005 JavaWorld.com, an IDG company

http://www.javaworld.com/javaworld/jw-05-1999/jw-05-javaga p.html 2006-03-05

