
Using WebLogic RMI over IIOP

Introduction
RMI over IIOP overview

Java-to-IDL mapping
Objects-by-Value
Client types
EJB-to-CORBA mapping

Implementing with WebLogic RMI over IIOP
System requirements
Developing an RMI over IIOP application

Develop the remote interface and implementation class
Generate the IDL file
Compile the IDL file
Develop the client

Configure WebLogic Server
Code examples

Additional considerations

Other related documents:
Using WebLogic RMI
Accessing WebLogic Server objects from a CORBA client through delegation
BEA WebLogic Server Enterprise JavaBeans

Introduction
WebLogic RMI over IIOP extends the RMI programming model by providing the ability for
clients to access RMI remote objects using the Internet Inter-ORB Protocol (IIOP). This
exposes RMI remote objects to a new class of client -- the Common Object Request Broker
Architecture (CORBA) client. CORBA clients can be written in a variety of languages
including C++ and Java.

Within the developer community, there is a strong demand for the ability to access J2EE
services -- specifically Enterprise JavaBeans (EJB) -- from CORBA clients. Since RMI is an
enabling technology for EJB, providing RMI over IIOP enhances the ability to support
various clients. However, Java and CORBA are based upon very different object models.
Because of this, sharing data between objects created in the two programming models was,
until recently, limited to Remote and CORBA primitive data types. Neither CORBA
structures nor Java objects could be readily passed between disparate objects. As a result,
the Objects-by-Value specification was created by the Object Management Group (OMG).
This specification defines the enabling technology for exporting the Java object model into

 Corporate Info | News | Solutions | Products | Partners | Services | Events | Download | How To Buy
 e-docs | Site Map | Search | Contact | Glossary | WebLogic Server
Documentation

Page 1 of 9Using WebLogic RMI over IIOP

2006-03-05http://www.weblogic.com/docs51/classdocs/API_rmi_iiop.html

the CORBA programming model allowing for the interchange of complex data types
between the two models.

This document describes how to create RMI over IIOP applications for various clients types.
For more general information on WebLogic RMI including discussions on Java RMI clients,
please refer to Using WebLogic RMI.

Note: Although it is possible to call an EJB using RMI-IIOP, this is not an officially
supported feature of WebLogic Server 5.1.

RMI over IIOP overview
In CORBA, interfaces to remote objects are described in a platform-neutral interface
definition language (IDL). To map the IDL to a specific language, the IDL is compiled with
an IDL compiler. The IDL compiler generates a number of classes such as stubs and
skeletons which are used by the client and server for obtaining references to remote
objects, forwarding requests, and marshalling incoming calls.
Figure 1-1 Corba object relationships

RMI over IIOP allows CORBA clients to access RMI objects and is based on two
specifications of the OMG: Java-to-IDL mapping and Objects-by-value.

Java-to-IDL mapping
In WebLogic RMI over IIOP, interfaces to remote objects are described in a Java remote
interface that extends java.rmi.Remote. The Java-to-IDL mapping specification defines
how an IDL is derived from a Java remote interface. In the WebLogic RMI over IIOP
implementation, the implementation class is run through the WebLogic RMI compiler or
WebLogic EJB compiler with the - idl option. This creates an IDL equivalent of the
remote interface. This IDL is then compiled with an IDL compiler to generate the classes
required by the CORBA client.

The client obtains a reference to the remote object and forwards method calls through the
stub. WebLogic Server implements a CosNaming service that parses incoming IIOP
requests and dispatches them directly into the RMI runtime.
Figure 1-2 WebLogic RMI over IIOP object relationships

Page 2 of 9Using WebLogic RMI over IIOP

2006-03-05http://www.weblogic.com/docs51/classdocs/API_rmi_iiop.html

Objects-by-Value
The Objects-by-Value specification allows complex data types to be passed between the
two programming models. In order for a CORBA client to support Objects-by-Value, the
client should be developed in conjunction with an Object Request Broker (ORB) that
supports Objects-by-Value. To date, relatively few ORBs support Objects-by-Value. When
developing your RMI over IIOP application, you must consider whether your CORBA clients
will support Objects-by-Value and design your RMI interface accordingly. In other words,
you must limit you RMI interface to pass only primitive data types, if your application will
support CORBA clients that do not support Objects-by-Value. This will be discussed further
in Develop the remote interface and implementation class.

Client types
The CORBA 2.3 specification includes support for Objects-by-Value. While it is possible to
support clients that utilize pre-2.3 ORBs, certain limitations will apply. There are three
distinct kinds of CORBA clients you must consider when designing an RMI over IIOP
application. The type of client is defined by the specification the client ORB supports and
the programing model the client is developed against (RMI/JNDI or CORBA/CosNaming).

Implementing with WebLogic RMI over IIOP discusses how to create an RMI over IIOP
application that supports these types of clients.

Client Definition

RMI over
IIOP client

RMI client that utilizes the CORBA 2.3 specification's support for Objects-
by-Value. This Java client is developed using the standard RMI/JNDI
model (with a few exceptions that are discussed in Develop the client).

IDL(OBV)
client

C++ CORBA client that uses a CORBA 2.3 ORB. Note: Due to name-
space conflicts, Java CORBA clients that use a CORBA 2.3 ORB are not
supported by the RMI over IIOP specification.

IDL(non-
OBV)
client

CORBA client that uses a pre-CORBA 2.3 ORB

Page 3 of 9Using WebLogic RMI over IIOP

2006-03-05http://www.weblogic.com/docs51/classdocs/API_rmi_iiop.html

EJB-to-CORBA mapping
WebLogic RMI over IIOP is the framework for EJB-to-CORBA mapping support. Currently,
however, a standard for passing user identity -- required to implement EJB-to-CORBA
mapping -- does not exist and the requirement for transaction propagation from the client is
in question. Note: Although it is possible to call an EJB using RMI-IIOP, this is not an
officially supported feature of WebLogic Server 5.1. While RMI over IIOP does allow
CORBA clients to access EJBeans, the following services will not be available:

EJB transaction services

EJB security services

Implementing with WebLogic RMI over IIOP

System requirements
WebLogic RMI over IIOP is supported under JDK 1.3 only. JDK 1.3 will be in production
soon. Until JDK 1.3 is in final release and has been certified for WebLogic Server,
WebLogic RMI over IIOP should be used for non-production purposes only. See WebLogic
platform support for an up-to-date listing of supported platforms and JDKs.

Developing an RMI over IIOP application
To develop an RMI over IIOP application (RMI and/or EJB), the following steps must be
performed:

1. Develop the remote interface and implementation class and compile with a Java compiler

2. Generate the IDL file using the WebLogic RMI compiler or WebLogic EJB compiler.

3. Compile the IDL file with an IDL compiler and compile the resulting classes with a
language-specific compiler

4. Develop the client and compile with a language-specific compiler

Develop the remote interface and implementation class
To develop an RMI object, you must define the object's public methods in an interface that
extends java.rmi.Remote.

With RMI objects, you can implement the interface in a class named
interfaceNameImpl. The implementation class it can be bound to the JNDI tree to be
made available to clients. Typically, your implementation class will be configured as a
WebLogic startup class and will include a main method that binds the object into the JNDI
tree. For more information on developing RMI objects, see Using WebLogic RMI.

Special considerations for supporting non-OBV clients
If your client ORB does not support Objects-by-Value, you must limit your RMI interface to
pass only other interfaces or CORBA primitive data types. The following table lists ORBs

Page 4 of 9Using WebLogic RMI over IIOP

2006-03-05http://www.weblogic.com/docs51/classdocs/API_rmi_iiop.html

that we have tested with respect to Objects-by-Value support:

Generate the IDL file
After developing and compiling the implementation class, you must generate an IDL file by
running the WebLogic RMI compiler or WebLogic EJB compiler with the -idl option. If the
client is an RMI over IIOP client (as defined in Introduction), you must also generate the
IIOP stub classes required by the client using the -iiop option. If the client is an IDL client,
the required stub classes will be generated when you compile the IDL file as described in
the following section. For general information on the these compilers, refer to Using
WebLogic RMI and BEA WebLogic Server Enterprise JavaBeans. The following compiler
options are specific to RMI over IIOP:

The options are applied as shown in this example of running the RMI compiler:

 $ java weblogic.rmic -idl -idlDirectory /IDL
 examples.rmi_iiop.HelloImpl

Vendor Versions Objects-by-Value

Inprise VisiBroker 3.3, 3.4 not supported

JavaSoft JDK 1.2 not supported

JavaSoft RMI over IIOP Reference Implementation supported

Option Function

-idl Creates an IDL for the remote interface of the implementation
class being compiled

-idlDirectory Target directory where the IDL will be generated

-
idlNoFactories

Do not generate factory methods for value types. This is useful if
your client ORB does not support the factory valuetype.

-idlOverwrite Causes the compiler to overwrite an existing idl file of the same
name

-idlAll Creates an IDL that adheres strictly to the Objects-By-Value
specification

-idlVerbose Display verbose information for IDL generation

-iiop Creates stub classes required for RMI over IIOP clients that
utilize the JDK 1.3 ORB. Note: Tie classes are also created,
however these are not used by the server or client.

-iiopDirectory Target directory where the IIOP classes will be generated

Page 5 of 9Using WebLogic RMI over IIOP

2006-03-05http://www.weblogic.com/docs51/classdocs/API_rmi_iiop.html

The compiler will generate the IDL file within sub-directories of the idlDirectoy
according to the package of the implementation class. For example, the above command
will result in a Hello.idl file generated in the /IDL/examples/rmi_iiop directory. If
the idlDirectory option is not used, the IDL file will be generated relative to the location
of the generated stub and skeleton classes.

Compile the IDL file
Now that you have an IDL file, it can be used to create the stub classes required by your
IDL client (as defined in Client types) to communicate with the remote class. Your ORB
vendor will provide an IDL compiler.

This step is unnecessary for RMI over IIOP clients since the stub class should have already
been generated using the -iiop option with the RMI or EJB compiler in the previous step.
Note that the IIOP stubs created by the WebLogic RMI compiler are intended to be used
with the JDK 1.3 ORB. If you are using another ORB, consult the ORB vendor's
documentation to determine whether these stubs are appropriate.

The IDL file generated by the WebLogic compilers contains the directives: #include
orb.idl. This IDL file should be provided by your ORB vendor. The directory containing
this file should be included in the IDL compiler's include path at compile time. An orb.idl
file is shipped in the /lib directory of the WebLogic distribution. This file is only intended
for use with the ORB included in the JDK.

If you are developing a Java IDL(non-OBV) client, you should be careful to compile your
server-side and client-side classes into separate directories and to keep the two
CLASSPATHs (server- and client-side CLASSPATHs) separate. Package and class names
can be repeated on the server- and client- side, particularly with the class that defines the
remote interface. Since the RMI object and the IDL client have different type systems, the
class that defines the interface for the server-side will be very different from the class that
defines the interface on the client-side. To avoid conflicts, it is essential that the client
CLASSPATH does not include the RMI object classes, and that the server CLASSPATH
does not include any client classes.

Develop the client
With RMI over IIOP, clients may be developed using the RMI/JNDI programming model
(RMI over IIOP clients) or the CORBA/CosNaming model (IDL clients).

Note: Although it is possible to call an EJB using RMI-IIOP, this is not an officially
supported feature of WebLogic Server5.1.

RMI over IIOP clients
RMI clients access remote objects by creating an initial context and performing a lookup on
the object. The object is then cast to the appropriate type. RMI over IIOP clients differ from
regular RMI clients in that IIOP is defined as the protocol when obtaining an initial context.
Because of this, lookups and casts must be performed in conjunction with the
javax.rmi.PortableRemoteObject.narrow() method.

For example, in the stateless session EJB example (the
examples.ejb.basic.statelessSession package included in your distribution), an

Page 6 of 9Using WebLogic RMI over IIOP

2006-03-05http://www.weblogic.com/docs51/classdocs/API_rmi_iiop.html

RMI client creates an initial context, performs a lookup on the EJBean home, obtains a
reference to an EJBean, and calls methods on the EJBean. To make this example work
over IIOP, you must perform the following steps:

Re-compile the EJBean and EJBean home implementation classes using the WebLogic
EJB compiler with the - iiop option. This generates the appropriate stubs for exporting
over IIOP.

Obtain an initial context by specifying IIOP as the protocol.

Modify the client code to perform the lookup in conjunction with the
javax.rmi.PortableRemoteObject.narrow() method.

In the statelessSession example, the client obtains an initial context using the code below:
Listing 1-1 Obtaining an InitialContext

h.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
h.put(Context.PROVIDER_URL, url);
InitialContext ic = new InitialContext(h);

where url defines the protocol, hostname, and listen port for the WebLogic Server and is
passed in as a command-line argument. To make this client connect over IIOP, you would
run client with a command like:

 $ java examples.ejb.basic.statelessSession.Client
 iiop://localhost:7001

Additionally, javax.rmi.PortableRemoteObject.narrow() must be used in any
situation where you would normally cast an object to a specific class type. For example, the
client code responsible for looking up the EJBean home and casting the result to a
TraderHome object must be modified to use the
javax.rmi.PortableRemoteObject.narrow() as shown below:

Listing 1-2 Performing a lookup

TraderHome brokerage = (TraderHome)
 javax.rmi.PortableRemoteObject.narrow(
 ctx.lookup("statelessSession.TraderHome"),
 TraderHome.class);

IDL clients
IDL clients are pure CORBA clients and do not require any WebLogic classes. Depending
on your ORB vendor, additional classes may be generated to help resolve, narrow, and

Page 7 of 9Using WebLogic RMI over IIOP

2006-03-05http://www.weblogic.com/docs51/classdocs/API_rmi_iiop.html

obtain a reference to the remote class. In the following example of a client developed
against a VisiBroker 3.4 ORB, the client initializes a naming context, obtains a reference to
the remote object, and calls a method on the remote object.
Listing 1-3 Code segment from C++ client of the RMI-IIOP hello example

// obtain WebLogic Server IOR from command line argument
const char* ior = argv[1];
// string to object
CORBA::Object_ptr o = orb->string_to_object(ior);
// obtain a naming context
CosNaming::NamingContext_var context =
 CosNaming::NamingContext::_narrow(o);
CosNaming::Name name;
name.length(1);
name[0].id = "HelloServer";
name[0].kind = "";
// resolve and narrow to RMI object
CORBA::Object_var object = context->resolve(name);

examples::rmi_iiop::hello::Hello_var hi =
 examples::rmi_iiop::hello::Hello::_narrow(object);

The naming context is obtained by narrowing a CORBA object to the WebLogic IOR. In a
future version, RMI over IIOP will have "plug-and-play" capability with select ORBs and will
not require obtaining the IOR of the server.

The host2ior utility included with WebLogic Server can be used to print the WebLogic
Server IOR to the console by running the following command:

 $ java utils.host2ior hostName port

where hostName is the name of the machine running WebLogic Server and port is the port
where WebLogic Server is listening for connections.

Configure WebLogic Server
Because of a lack of standards for propagating client identity from a CORBA client, the
identity of any client connecting over IIOP will default to "guest". The property
weblogic.iiop.user can be set in the weblogic.properties file to establish a single
identity for all clients connecting over IIOP as shown in the example below:

weblogic.iiop.user=bob

No additional server configuration is required to use RMI over IIOP beyond ensuring that all
remote objects are bound to the JNDI tree to be made available to clients. RMI objects are
typically bound to the JNDI tree by a startup class. EJBean homes are bound to the JNDI

Page 8 of 9Using WebLogic RMI over IIOP

2006-03-05http://www.weblogic.com/docs51/classdocs/API_rmi_iiop.html

tree at the time of deployment. WebLogic Server implements a CosNaming Service by
delegating all lookup calls to the JNDI tree.

Code examples
The examples.rmi_iiop package is included within the /weblogic/examples
directory and demonstrates connectivity with a given client ORB. Refer to the example
documentation for more details.

Additional considerations
WebLogic RMI over IIOP is intended to be a complete implementation of RMI. Please refer
to the release notes for any additional considerations that might apply to your version.

Copyright © 2000 BEA Systems, Inc. All rights reserved.
Required browser: Netscape 4.0 or higher, or Microsoft Internet Explorer 4.0 or higher.

Page 9 of 9Using WebLogic RMI over IIOP

2006-03-05http://www.weblogic.com/docs51/classdocs/API_rmi_iiop.html

