jGuru: Remote Method Invocation (RMI)

Sun.com

Tutorials & Code Camps

jGuru: Remote Method Invocation (RMlI)

sy JGUIrY

[About This Course| Exercises| Download]

This short course covers the fundamental s of the Remote Method Invocation (RMI) technology, as
found in the Java 2 platform.

Course Outline

I ntroduction to Distributed Computing with RM |

o Gods
n Comparison of Distributed and Nondistributed Java Programs

. JavaRMI Architecture
o Interfaces. The Heart of RMI
o RMI Architecture Layers
« Stub and Skeleton Layer
« Remote Reference Layer
« Transport Layer

. Naming Remote Objects

. Using RMI
o Interfaces

o Implementation
o Stubs and Skeletons
n Host Server

file:/l/E[/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (1 of 31) [2010-10-16 19:55:36]

http://www.sun.com/
http://www.sun.com/
http://www.jguru.com/
http://java.sun.com/developer/onlineTraining/rmi/index.html
http://java.sun.com/developer/onlineTraining/rmi/exercises.html
http://java.sun.com/developer/onlineTraining/Downloads/rmi.zip
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#IntroRMI
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#RMIArchitectureGoals
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#Comparison
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#JavaRMIArchitecture
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#RMIInterfaces
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#RMIArchitectureLayers
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#RMIStubAndSkeletonLayer
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#RMIArchitectureRemoteReferenceLayer
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#RMIArchitectureTransportLayer
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#NamingRemoteObjects
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#UsingRMI
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#RMIInterfaces2
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#RMIImplementations
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#RMIStubsAndSkeletons
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#RMIHostingServer

jGuru: Remote Method Invocation (RMI)

o Client
o Running the RMI System

. Parametersin RMI

. Parametersin aSingle Java Virtua Machinel
o Primitive Parameters
o Object Parameters
o Remote Object Parameters

. RMI Client-Side Callbacks

. Distributing and Installing RM| Software
o Distributing RMI Classes
o Automatic Distribution of Classes
o Firewall Issues

. Distributed Garbage Collection

. Serializing Remote Objects

. Mobile Agent Architectures

. Alternate |mplementations

. Additional Resources
» Booksand Articles

Introduction to Distributed Computing with RMI

Remote Method Invocation (RMI) technology, first introduced in JDK 1.1, elevates network
programming to a higher plane. Although RMI isrelatively easy to use, it is aremarkably powerful
technology and exposes the average Java devel oper to an entirely new paradigm--the world of
distributed object computing.

This course provides you with an in-depth introduction to this versatile technology. RMI has evolved

considerably since JDK 1.1, and has been significantly upgraded under the Java 2 SDK. Where
applicable, the differences between the two releases will be indicated.

file:/l/E[/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (2 of 31) [2010-10-16 19:55:36]

http://java.sun.com/developer/onlineTraining/rmi/RMI.html#RMIClient
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#RunningAnRMISystem
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#ParametersInRMI
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#SingleJVM
http://java.sun.com/developer/onlineTraining/rmi/#TJVM
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#PrimitiveParameters
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#ObjectParameters
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#RemoteObjectParameters
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#RMIClientSideCallbacks
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#RMISoftwareInstallation
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#DistributingRMIClasses
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#ClassDistribution
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#FirewallIssues
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#DistributedGarbageCollection
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#SerializingRemoteObjects
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#MobileAgentArchitectures
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#AlternateImplementations
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#AdditionalResources
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#BooksAndArticles

jGuru: Remote Method Invocation (RMI)

Back to Top
Goals

A primary goal for the RMI designers was to allow programmers to develop distributed Java
programs with the same syntax and semantics used for non-distributed programs. To do this, they had
to carefully map how Java classes and objects work in asingle Java Virtual Machinel (JVM) to anew
model of how classes and objects would work in adistributed (multiple JVM) computing
environment.

This section introduces the RM1 architecture from the perspective of the distributed or remote Java
objects, and explores their differences through the behavior of local Java objects. The RMI

architecture defines how objects behave, how and when exceptions can occur, how memory is
managed, and how parameters are passed to, and returned from, remote methods.

Back to Top
Comparison of Distributed and Nondistributed Java Programs

The RMI architects tried to make the use of distributed Java objects similar to using local Java
objects. While they succeeded, some important differences are listed in the table below.

Do not worry if you do not understand al of the difference. They will become clear as you explore
the RMI architecture. Y ou can use thistable as areference as you learn about RMI.

Local Object Remote Object
Object Definition |A local object isdefined by | A remote object's exported behavior is defined
aJavaclass. by an interface that must extend the Renot e
interface.
Object A local object is A remote object's behavior is executed by a Java
I mplementation implemented by its Java class that implements the remote interface.
class.

Object Creation |A new instance of alocal A new instance of aremote object is created on
object is created by the new |the host computer with the new operator. A
operator. client cannot directly create a new remote object

(unless using Java 2 Remote Object Activation).

Object Access A local object is accessed A remote object is accessed via an object
directly via an object reference variable which points to a proxy stub
reference variable. implementation of the remote interface.

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (3 of 31) [2010-10-16 19:55:36]

http://java.sun.com/developer/onlineTraining/rmi/#top
http://java.sun.com/developer/onlineTraining/rmi/#TJVM
http://java.sun.com/developer/onlineTraining/rmi/#top
http://java.sun.com/products/jdk/1.2/docs/api/java/rmi/Remote.html

jGuru: Remote Method Invocation (RMI)

References Inasingle VM, anobject |A "remote reference” is a pointer to a proxy
reference pointsdirectly at | object (a"stub") in the local heap. That stub
an object in the heap. contains information that allows it to connect to

aremote object, which contains the
implementation of the methods.

Active References |Inasingle VM, an object is |In adistributed environment, remote JV M's may
considered "alive" if thereis |crash, and network connections may be lost. A
at least onereferencetoit. | remote object is considered to have an active

remote reference to it if it has been accessed
within a certain time period (the lease period). If
all remote references have been explicitly
dropped, or if al remote references have expired
|eases, then aremote object is available for
distributed garbage collection.

Finalization If an object implementsthe |If aremote object implements the
finalize() method,itis Unref er enced interface, the unreferenced
called before an object is method of that interface is called when all
reclaimed by the garbage remote references have been dropped.

collector.

Garbage When all local referencesto |The distributed garbage collector works with the

Collection an object have been dropped, local garbage collector. If there are no remote
an object becomes a references and all local references to aremote
candidate for garbage object have been dropped, then it becomes a
collection. candidate for garbage collection through the

normal means.

Exceptions Exceptions are either RMI forces programs to deal with any possible
Runtime exceptions or Renot eExcept i on objectsthat may be
Exceptions. The Java thrown. This was done to ensure the robustness

compiler forces aprogram to | of distributed applications.
handle all Exceptions.

Back to Top
Java RMI Architecture

The design goal for the RMI architecture was to create a Java distributed object model that integrates
naturally into the Java programming language and the local object model. RM|I architects have
succeeded; creating a system that extends the safety and robustness of the Java architecture to the
distributed computing world.

Interfaces: The Heart of RMI

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (4 of 31) [2010-10-16 19:55:36]

http://www.javasoft.com/docs/books/jls/html/12.doc.html#44748
http://java.sun.com/products/jdk/1.2/index.html
http://java.sun.com/products/jdk/1.2/index.html
http://java.sun.com/developer/onlineTraining/rmi/#top

jGuru: Remote Method Invocation (RMI)

The RMI architecture is based on one important principle: the definition of behavior and the
implementation of that behavior are separate concepts. RM|I allows the code that defines the behavior
and the code that implements the behavior to remain separate and to run on separate JVMs.

Thisfits nicely with the needs of a distributed system where clients are concerned about the definition
of aservice and servers are focused on providing the service.

Specificaly, in RMI, the definition of aremote serviceis coded using a Javainterface. The
implementation of the remote serviceis coded in aclass. Therefore, the key to understanding RMI is
to remember that interfaces define behavior and classes define implementation.

While the following diagram illustrates this separation,

izlient Program i Serer Frogram A
Interface Implementation
F Y
iy
RMI - -
System

remember that a Java interface does not contain executable code. RM| supports two classes that
implement the same interface. The first class is the implementation of the behavior, and it runs on the
server. The second class acts as a proxy for the remote service and it runs on the client. Thisis shown
in the following diagram.

glnterface:

Service

i ilient N 4 SErvEr K
Service SErvice
F'FEI.':{':." % Implemerﬁatin:un
R

"Mﬂgil:"

. / . S

A client program makes method calls on the proxy object, RMI| sends the request to the remote JVM,
and forwards it to the implementation. Any return values provided by the implementation are sent

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (5 of 31) [2010-10-16 19:55:36]

jGuru: Remote Method Invocation (RMI)

back to the proxy and then to the client's program.
Back to Top

RMI Architecture Layers

With an understanding of the high-level RMI architecture, take alook under the coversto seeits
Implementation.

The RMI implementation is essentially built from three abstraction layers. Thefirst is the Stub and
Skeleton layer, which lies just beneath the view of the developer. This layer intercepts method calls
made by the client to the interface reference variable and redirects these calls to a remote RMI
service,

The next layer isthe Remote Reference Layer. This layer understands how to interpret and manage
references made from clients to the remote service objects. In JDK 1.1, this layer connects clientsto
remote service objects that are running and exported on a server. The connection is a one-to-one
(unicast) link. In the Java 2 SDK, thislayer was enhanced to support the activation of dormant remote
service objects via Remote Object Activation.

The transport layer is based on TCP/IP connections between machines in a network. It provides basic
connectivity, aswell as some firewall penetration strategies.

(:_ Client PFrogram _-> (:_ Seprer Program _)

Stubs & Skeletons Stubs & Skeletons

Rl
system

Femote Reference Layer Femote Reference Layer

Transport Layer

By using alayered architecture each of the layers could be enhanced or replaced without affecting the
rest of the system. For example, the transport layer could be replaced by a UDP/IP layer without
affecting the upper layers.

Back to Top
Stub and Skeleton Layer

The stub and skeleton layer of RMI lie just beneath the view of the Java developer. In this layer, RMI
uses the Proxy design pattern as described in the book, Design Patterns by Gamma, Helm, Johnson

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (6 of 31) [2010-10-16 19:55:36]

http://java.sun.com/developer/onlineTraining/rmi/#top
http://java.sun.com/developer/onlineTraining/rmi/#top
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#BooksAndArticles

jGuru: Remote Method Invocation (RMI)

and Vlissides. In the Proxy pattern, an object in one context is represented by another (the proxy) in a
separate context. The proxy knows how to forward method calls between the participating objects.
The following class diagram illustrates the Proxy pattern.

glnterfaces
Subject
+reguest(l
Feal=ubject Promy
N real=zubject
+reguest(l +reguest(l

In RMI's use of the Proxy pattern, the stub class plays the role of the proxy, and the remote service
implementation class playsthe role of the Real Subj ect .

A skeleton is a helper classthat is generated for RMI to use. The skeleton understands how to
communicate with the stub across the RMI link. The skeleton carries on a conversation with the stub;
it reads the parameters for the method call from the link, makes the call to the remote service
implementation object, accepts the return value, and then writes the return value back to the stub.

In the Java 2 SDK implementation of RMI, the new wire protocol has made skeleton classes obsol ete.
RMI uses reflection to make the connection to the remote service object. Y ou only have to worry
about skeleton classes and objectsin JDK 1.1 and JDK 1.1 compatible system implementations.

Remote Reference Layer

The Remote Reference Layers defines and supports the invocation semantics of the RMI connection.
This layer provides aRenpt eRef object that represents the link to the remote service
implementation object.

The stub objectsusethei nvoke() method in Renot eRef to forward the method call. The
Renot eRef object understands the invocation semantics for remote services.

The JDK 1.1 implementation of RMI provides only one way for clients to connect to remote service
Implementations. a unicast, point-to-point connection. Before a client can use aremote service, the
remote service must be instantiated on the server and exported to the RMI system. (If it isthe primary
service, it must also be named and registered in the RMI Registry).

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (7 of 31) [2010-10-16 19:55:36]

http://java.sun.com/developer/onlineTraining/rmi/RMI.html#UsingRMI

jGuru: Remote Method Invocation (RMI)

The Java 2 SDK implementation of RM| adds a new semantic for the client-server connection. In this
version, RMI supports activatable remote objects. When a method call is made to the proxy for an
activatable object, RM| determinesif the remote service implementation object is dormant. If itis
dormant, RMI will instantiate the object and restore its state from a disk file. Once an activatable
object isin memory, it behaves just like JDK 1.1 remote service implementation objects.

Other types of connection semantics are possible. For example, with multicast, a single proxy could
send a method request to multiple implementations simultaneously and accept the first reply (this
Improves response time and possibly improves availability). In the future, Sun may add additional
Invocation semantics to RMI.

Back to Top

Transport Layer

The Transport Layer makes the connection between JVMs. All connections are stream-based network
connections that use TCP/IP.

Even if two JVMs are running on the same physical computer, they connect through their host
computer's TCP/IP network protocol stack. (Thisiswhy you must have an operational TCP/IP
configuration on your computer to run the Exercisesin this course). The following diagram shows the
unfettered use of TCP/IP connections between JVMs.

JEE JEE JEE JEE
t\ Host O /2‘ ;‘ Host O
ﬁ@wer / Metwark Layer

D Metwark Cahle j

Asyou know, TCP/IP provides a persistent, stream-based connection between two machines based on
an | P address and port number at each end. Usually a DNS name is used instead of an IP address; this
means you could talk about a TCP/IP connection betweenf | i cka. nagel ang. com 3452 and
rosa.j guru. com 4432. Inthe current release of RMI, TCP/IP connections are used as the
foundation for all machine-to-machine connections.

On top of TCP/IP, RMI uses awire level protocol called Java Remote Method Protocol (JRMP).
JRMP isaproprietary, stream-based protocol that is only partially speci f i ed isnow in two

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (8 of 31) [2010-10-16 19:55:36]

http://java.sun.com/developer/onlineTraining/rmi/#top
http://java.sun.com/products/jdk/1.2/index.html#60

jGuru: Remote Method Invocation (RMI)

versions. The first version was released with the JDK 1.1 version of RMI and required the use of
Skeleton classes on the server. The second version was released with the Java 2 SDK. It has been
optimized for performance and does not require skeleton classes. (Note that some alternate
implementations, such as BEA Weblogic and NinjaRMI do not use JRMP, but instead use their own
wire level protocol. Cbj ect Space's Voyager does recognize JRMP and will interoperate with RM|
at the wire level.) Some other changes with the Java 2 SDK are that RMI service interfaces are not
required to extend fromj ava. r m . Renot e and their service methods do not necessarily throw
Renot eExcepti on.

Sun and IBM have jointly worked on the next version of RMI, called RMI-110P, which will be

available with Java 2 SDK Version 1.3. Theinteresting thing about RMI-110P is that instead of using
JRMP, it will use the Object Management Group (OMG) Internet Inter-ORB Protocol, 110P, to

communicate between clients and servers.

The OMG isagroup of more than 800 members that defines a vendor-neutral, distributed object
architecture called Common Object Request Broker Architecture (CORBA). CORBA Object Request
Broker (ORB) clients and servers communicate with each other using 110OP. With the adoption of the
Objects-by-Value extension to CORBA and the Java Language to IDL Mapping proposal, the ground
work was set for direct RMI to CORBA integration. This new RMI-110P implementation supports
most of the RMI feature set, except for:

. java.rm.server.RM Socket Fact ory
. Uni cast Renot eQbj ect

« Unreferenced

. The DGC interfaces

The RMI transport layer is designed to make a connection between clients and server, even in the
face of networking obstacles.

While the transport layer prefers to use multiple TCP/IP connections, some network configurations
only allow a single TCP/IP connection between a client and server (some browsers restrict applets to
asingle network connection back to their hosting server).

In this case, the transport layer multiplexes multiple virtual connections within asingle TCP/IP
connection.

Naming Remote Objects

During the presentation of the RMI Architecture, one question has been repeatedly postponed: "How
doesaclient find an RMI remote service?" Now you'll find the answer to that question. Clients find
remote services by using a naming or directory service. This may seem like circular logic. How can a
client locate a service by using a service? In fact, that is exactly the case. A naming or directory

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (9 of 31) [2010-10-16 19:55:36]

http://java.sun.com/developer/onlineTraining/rmi/RMI.html#AlternateImplementations
http://www.omg.org/
http://java.sun.com/products/jdk/1.2/index.html
http://java.sun.com/products/jdk/1.2/index.html
http://java.sun.com/products/jdk/1.2/index.html

jGuru: Remote Method Invocation (RMI)

service isrun on awell-known host and port number.
(Well-known meaning everyone in an organization knowing what it is).

RMI can use many different directory services, including the Java Naming and Directory Interface
(INDI). RMI itself includes a simple service caled the RMI Registry, r m r egi st ry. The RMI
Registry runs on each machine that hosts remote service objects and accepts queries for services, by
default on port 1099.

On ahost machine, a server program creates a remote service by first creating alocal object that
implements that service. Next, it exports that object to RMI. When the object is exported, RM|

creates a listening service that waits for clients to connect and request the service. After exporting, the
server registers the object in the RMI Registry under a public name.

On the client side, the RMI Registry is accessed through the static class Nam ng. It provides the
method | ookup() that aclient usesto query aregistry. The method | ookup() acceptsa URL that

specifies the server host name and the name of the desired service. The method returns aremote
reference to the service object. The URL takes the form:

rm ://<host_ nane>
[: <nanme_servi ce_port >]
[<servi ce_nane>

wherethe host _nane isaname recognized on the local area network (LAN) or a DNS name on the
Internet. Thenane_ser vi ce_port only needsto be specified only if the naming serviceis
running on a different port to the default 1099.

Back to Top

Using RMI

It is now time to build aworking RMI system and get hands-on experience. In this section, you will
build a simple remote calculator service and use it from aclient program.

A working RMI system is composed of several parts.

. Interface definitions for the remote services

. Implementations of the remote services

. Stub and Skeleton files

. A server to host the remote services

. An RMI Naming service that alows clients to find the remote services

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (10 of 31) [2010-10-16 19:55:36]

http://java.sun.com/products/jdk/1.2/docs/api/java/rmi/Naming.html
http://java.sun.com/products/jdk/1.2/docs/api/java/rmi/Naming.html#lookup(java.lang.String)
http://java.sun.com/developer/onlineTraining/rmi/#top

jGuru: Remote Method Invocation (RMI)

. A classfileprovider (an HTTP or FTP server)
. A client program that needs the remote services

In the next sections, you will build asimple RMI system in a step-by-step fashion. You are
encouraged to create a fresh subdirectory on your computer and create these files as you read the text.

To simplify things, you will use asingle directory for the client and server code. By running the client
and the server out of the same directory, you will not haveto set upan HTTP or FTP server to
provide the classfiles. (Details about how to use HTTP and FTP servers as class file providers will be
covered in the section on Distributing and Installing RMI Software)

Assuming that the RMI system is already designed, you take the following steps to build a system:

Write and compile Java code for interfaces

Write and compile Java code for implementation classes

Generate Stub and Skeleton class files from the implementation classes
Write Java code for a remote service host program

Develop Java code for RMI client program

Install and run RMI system

o Uk wNPE

Back to Top
1. Interfaces

Thefirst step isto write and compile the Java code for the service interface. The
Cal cul at or interface defines all of the remote features offered by the service:

public interface Cal cul ator
extends java.rm . Renpte {
public |l ong add(long a, |ong b)
throws java.rm . Renpt eExcepti on;

public | ong sub(long a, |ong b)
throws java.rm . Renot eExcepti on;

public long mul (long a, |ong b)
throws java.rm . Renot eException;

public long div(long a, |ong b)
throws java.rm . Renot eExcepti on;

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (11 of 31) [2010-10-16 19:55:36]

http://java.sun.com/developer/onlineTraining/rmi/RMI.html#RMISoftwareInstallation
http://java.sun.com/developer/onlineTraining/rmi/#top

jGuru: Remote Method Invocation (RMI)

Notice thisinterface extends Renot e, and each method signature declares that it may throw a
Renot eExcept i on object.

Copy thisfile to your directory and compile it with the Java compiler:
>j avac Cal cul ator.java
2. Implementation

Next, you write the implementation for the remote service. Thisisthe Cal cul at or | npl
class:

public class Cal cul atorl npl
ext ends
java.rm . server. Uni cast Renot e(bj ect
i mpl ements Cal cul ator {

/1 1nplenmentations nust have an
/lexplicit constructor
/1 in order to declare the
/ | Renot eExcepti on exception
public Cal cul atorl nmpl ()
throws java.rm . RenoteException {
super () ;

}

public | ong add(long a, |ong b)
throws java.rn . Renpt eException {
return a + b;

}

public | ong sub(long a, |ong b)
throws java.rm . Renot eException {
return a - b;

}

public long mul (long a, |ong b)
throws java.rn . Renpt eException {
return a * b;

}

public long div(long a, |ong b)
throws java.rn . Renpt eException {
return a / b;

file:/lIE[/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (12 of 31) [2010-10-16 19:55:36]

jGuru: Remote Method Invocation (RMI)

Again, copy this code into your directory and compileit.

The implementation class uses Uni cast Renpt eQbj ect tolink into the RMI system. In the
example the implementation class directly extends Uni cast Renot eQbj ect . Thisisnot a
requirement. A class that does not extend Uni cast Renot eCbj ect may useits

export Qbj ect () method to be linked into RMI.

When aclass extends Uni cast Renot eCbj ect , it must provide a constructor that declares
that it may throw aRenot eExcept i on object. When this constructor calssuper (), it
activates codein Uni cast Renot eCbj ect that performsthe RMI linking and remote
object initialization.

3. Stubs and Skeletons

Y ou next use the RMI compiler, r m ¢, to generate the stub and skeleton files. The compiler
runs on the remote service implementation classfile.

>rm c¢ Cal cul at or | npl

Try thisin your directory. After you run r m ¢ you should find thefile
Cal cul at or _St ub. cl ass and, if you are running the Java 2 SDK,
Cal cul at or _Skel . cl ass.

Options for the JDK 1.1 version of the RMI compiler, r m c, are:

Usage: rmc <options> <class nanes>

wher e <options> includes:
-keep Do not delete internediate
generated source files
-keepgenerated (sane as "-keep")
-g Cener at e debugging info
- depend Reconpil e out-of-date
files recursively
-nowar n Generate no warni ngs
-verbose CQut put nessages about
what the conpiler is doing
-cl asspat h <pat h> Speci fy where
to find i nput source
and class files
-d <directory> Specify where to
pl ace generated class files
-J<runtinme flag> Pass argunent
to the java interpreter

file:///[E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (13 of 31) [2010-10-16 19:55:36]

http://java.sun.com/products/jdk/1.2/index.html

jGuru: Remote Method Invocation (RMI)

The Java 2 platform version of r m ¢ add three new options:

-vl.1 Create stubs/skel etons
for JDK 1.1 stub
prot ocol version
-vconpat (default)
Creat e stubs/skel etons conpati bl e
with both JDK 1.1 and Java 2
stub protocol versions
-v1l.2 Create stubs for Java 2 stub protocol
version only

4. Host Server

Remote RMI services must be hosted in a server process. The class Cal cul at or Ser ver is
avery simple server that provides the bare essentials for hosting.

i mport java.rn . Nam ng;
public class Cal cul ator Server ({

public Cal cul ator Server () {

try {

Cal culator ¢ = new Cal cul atorlnpl ();

Nam ng. rebi nd("rm ://1 ocal host: 1099/ Cal cul at or Servi ce", c);
} catch (Exception e) {

Systemout.println("Trouble: " + e);
}

}

public static void main(String args[]) {
new Cal cul at or Server () ;

}

Back to Top

5. Client

file:/lIE[/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (14 of 31) [2010-10-16 19:55:36]

http://java.sun.com/developer/onlineTraining/rmi/#top

jGuru: Remote Method Invocation (RMI)

The source code for the client follows:

i mport java.rm . Nam ng;

i mport java.rmn . RenoteException;

i mport java. net. Mal f or mredURLExcepti on;
i mport java.rmn . Not BoundExcepti on;

public class Calculatordient {

public static void main(String[] args) {
try {
Cal culator ¢ = (Cal cul at or)
Nam ng. | ookup(
"rm ://1ocal host
[Cal cul at or Servi ce");
Systemout.println(c.sub(4, 3))
Systemout.println(c.add(4, 5);
Systemout.println(c.mul (3, 6))
Systemout.println(c.div(9, 3))
}
catch (Ml f ormredURLException nmurle) {
System out. println();
System out . printl n(
"Mal f or mredURLException");
Systemout. println(rmurle);
}
catch (RenoteException re) {
System out. println();
System out . printl n(
" Renot eException”);
Systemout.println(re);
}
catch (Not BoundExcepti on nbe) {
Systemout. println();
System out . printl n(
" Not BoundException");
System out . printl n(nbe);

}
catch (
java.lang. Arit hneti cException
ae) {
System out. println();
System out . printl n(
"java.lang. Arit hneti cException");
System out. println(ae);
}

file:/lIE[/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (15 of 31) [2010-10-16 19:55:36]

jGuru: Remote Method Invocation (RMI)

6. Running the RMI System

Y ou are now ready to run the system! Y ou need to start three consoles, one for the server, one
for the client, and one for the RMIRegistry.

Start with the Registry. Y ou must be in the directory that contains the classes you have
written. From there, enter the following:

rmregistry
If al goeswell, the registry will start running and you can switch to the next console.

In the second console start the server hosting the Cal cul at or Ser vi ce, and enter the
following:

>j ava Cal cul at or Ser ver

It will start, load the implementation into memory and wait for a client connection.

In the last console, start the client program.
>j ava Cal cul atord i ent

If all goeswell you will see the following outpult:

That'sit; you have created aworking RMI system. Even though you ran the three consoles on the
same computer, RMI uses your network stack and TCP/IP to communicate between the three separate
JVMs. Thisisafull-fledged RMI system.

Back to Top
Exercise

1. UML Definition of RMI Example System
2. Simple Banking System

file:/lIE[/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (16 of 31) [2010-10-16 19:55:36]

http://java.sun.com/developer/onlineTraining/rmi/#top
http://java.sun.com/developer/onlineTraining/rmi/exercises/UMLDefinition/index.html
http://java.sun.com/developer/onlineTraining/rmi/exercises/SimpleBankingSystem/index.html

jGuru: Remote Method Invocation (RMI)

Parameters in RMI

Y ou have seen that RMI supports method calls to remote objects. When these calls involve passing
parameters or accepting areturn value, how does RMI transfer these between JVMs? What semantics
are used? Does RMI support pass-by-value or pass-by-reference? The answer depends on whether the
parameters are primitive data types, objects, or remote objects.

Parameters in a Single JVM

First, review how parameters are passed in asingle VM. The normal semantics for Java technology
Is pass-by-value. When a parameter is passed to a method, the VM makes a copy of the value, places
the copy on the stack and then executes the method. When the code inside a method uses a parameter,
It accesses its stack and uses the copy of the parameter. Values returned from methods are also

copies.

When a primitive datatype (bool ean, byt e,short,i nt,l ong,char,fl oat, ordoubl e)is
passed as a parameter to a method, the mechanics of pass-by-value are straightforward. The
mechanics of passing an object as a parameter are more complex. Recall that an object residesin heap
memory and is accessed through one or more reference variables. And, while the following code
makes it look like an object is passed to the method pri nt | n()

String s = "Test";

System out. println(s);

in the mechanics it isthe reference variable that is passed to the method. In the example, a copy of
reference variable s is made (increasing the reference count to the St r i ng object by one) and is

placed on the stack. Inside the method, code uses the copy of the reference to access the object.

Now you will see how RMI passes parameters and return val ues between remote JVMs.

Primitive Parameters

When a primitive data type is passed as a parameter to aremote method, the RMI system passes it by
value. RMI will make a copy of a primitive data type and send it to the remote method. If a method

returns a primitive data type, it is aso returned to the calling VM by value.

Values are passed between JVMs in a standard, machine-independent format. This allows JVMs
running on different platforms to communicate with each other reliably.

Back to Top

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (17 of 31) [2010-10-16 19:55:36]

http://java.sun.com/developer/onlineTraining/rmi/#top

jGuru: Remote Method Invocation (RMI)

Object Parameters

When an object is passed to a remote method, the semantics change from the case of the single VM.
RMI sends the object itself, not its reference, between JVMs. It is the object that is passed by value,
not the reference to the object. Similarly, when aremote method returns an object, a copy of the
whole object is returned to the calling program.

Unlike primitive data types, sending an object to aremote VM isanontrivia task. A Java object can
be simple and self-contained, or it could refer to other Java objectsin complex graph-like structure.
Because different JVMs do not share heap memory, RMI| must send the referenced object and all
objects it references. (Passing large object graphs can use alot of CPU time and network bandwidth.)

RMI uses atechnology called Object Serialization to transform an object into alinear format that can
then be sent over the network wire. Object serialization essentially flattens an object and any objects
it references. Serialized objects can be de-serialized in the memory of the remote VM and made
ready for use by a Java program.

Remote Object Parameters

RMI introduces a third type of parameter to consider: remote objects. As you have seen, aclient

program can obtain a reference to a remote object through the RMI Registry program. Thereis
another way in which a client can obtain aremote reference, it can be returned to the client from a
method call. In the following code, the BankManager serviceget Account () method isused to
obtain aremote reference to an Account remote service.

BankManager bm
Account a;
try {

bm = (BankManager) Nam ng. | ookup(

"rm ://BankServer
/ BankManager Ser vi ce"
)
a = bmgetAccount("jGQuru");
/! Code that uses the account

}

catch (RenoteException re) {

}

In the implementation of get Account () , the method returns a (local) reference to the remote
service.

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (18 of 31) [2010-10-16 19:55:36]

http://java.sun.com/developer/onlineTraining/rmi/RMI.html#NamingRemoteObjects

jGuru: Remote Method Invocation (RMI)

publ i c Account
get Account (String account Name) ({
/1l Code to find the matchi ng account
Accountlnpl ai =
/'l return reference from search
return ai;

When a method returns alocal reference to an exported remote object, RMI does not return that
object. Instead, it substitutes another object (the remote proxy for that service) in the return stream.

The following diagram illustrates how RMI method calls might be used to:

. Return aremote reference from Server to Client A
. Send the remote reference from Client A to Client B
. Send the remote reference from Client B back to Server

Client & RMI Client B

parameter

I
—»(: Account :) (.-ﬂ-.c:c‘:turd)_

Rl

arameter

"f ﬂ.n:n:u:uuntlmpl)

(.ﬂ-.c:c:nunt)1

Notice that when the Account | npl object isreturned to Client A, the Account proxy object is
substituted. Subsequent method calls continue to send the reference first to Client B and then back to
Server. During this process, the reference continues to refer to one instance of the remote service.

Rl
parameter

It is particularly interesting to note that when the reference is returned to Server, it is not converted
into alocal reference to the implementation object. While this would result in a speed improvement,
maintaining this indirection ensures that the semantics of using a remote reference is maintained.

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (19 of 31) [2010-10-16 19:55:36]

jGuru: Remote Method Invocation (RMI)

Back to Top

Exercise

3. RMI Parameters

RMI Client-side Callbacks

In many architectures, a server may need to make aremote call to a client. Examples include progress
feedback, time tick notifications, warnings of problems, etc.

To accomplish this, aclient must also act as an RMI server. Thereis nothing really special about this
as RMI works equally well between all computers. However, it may be impractical for aclient to
extendj ava.rm . server. Uni cast Renot eQbj ect . In these cases, aremote object may

prepare itself for remote use by calling the static method

Uni cast Renot eCbj ect . export Qbj ect (<renote_obj ect>)

Exercise

4. RMI Client Callbacks

Distributing and Installing RMI Software

RMI adds support for a Distributed Class model to the Java platform and extends Java technology's
reach to multiple JVMs. It should not be a surprise that installing an RMI system is more involved
than setting up a Java runtime on a single computer. In this section, you will learn about the issues
related to installing and distributing an RMI based system.

For the purposes of this section, it is assumed that the overall process of designing a DC system has
led you to the point where you must consider the allocation of processing to nodes. And you are
trying to determine how to install the system onto each node.

Back to Top
Distributing RMI Classes

To run an RMI application, the supporting class files must be placed in locations that can be found by
the server and the clients.

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (20 of 31) [2010-10-16 19:55:36]

http://java.sun.com/developer/onlineTraining/rmi/#top
http://java.sun.com/developer/onlineTraining/rmi/exercises/RMIParameters/index.html
http://java.sun.com/products/jdk/1.2/index.html
http://java.sun.com/developer/onlineTraining/rmi/exercises/RMICallback/index.html
http://java.sun.com/developer/onlineTraining/rmi/#top

jGuru: Remote Method Invocation (RMI)
For the server, the following classes must be available to its class |oader:

. Remote service interface definitions

. Remote service implementations

. Skeletons for the implementation classes (JDK 1.1 based servers only)
« Stubs for the implementation classes

. All other server classes

For the client, the following classes must be available to its class |oader:

. Remote service interface definitions

. Stubsfor the remote service implementation classes

. Server classes for objects used by the client (such as return values)
. All other client classes

Once you know which files must be on the different nodes, it is a simple task to make sure they are
available to each JVM's class loader.

Automatic Distribution of Classes

The RMI designers extended the concept of class loading to include the loading of classes from FTP
serversand HTTP servers. Thisis a powerful extension as it means that classes can be deployed in
one, or only afew places, and all nodesin aRMI system will be able to get the proper classfilesto
operate.

RMI supports this remote class loading through the RM Cl assLoader . If aclient or server is

running an RMI system and it seesthat it must load a class from aremote location, it calls on the
RM Cl assLoader to do thiswork.

The way RMI loads classesis controlled by a number of properties. These properties can be set when
each VM isrun:

java [- D<PropertyNanme>=<PropertyVal ue> |+
<C assFi |l e>

The property j ava. rmi . server . codebase isused to specify aURL. ThisURL pointsto a
file:,ftp:,orhttp: location that supplies classesfor objects that are sent fromthisJVM. If a
program running in aJVM sends an object to another VM (as the return value from a method), that
other VM needs to load the classfile for that object. When RMI sends the object via serialization of
RMI embeds the URL specified by this parameter into the stream, alongside of the object.

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (21 of 31) [2010-10-16 19:55:36]

http://java.sun.com/products/jdk/1.2/index.html

jGuru: Remote Method Invocation (RMI)

Note: RMI does not send class files along with the serialized objects.

If the remote JVM needs to load a class file for an object, it looks for the embedded URL and
contacts the server at that location for thefile.

When the property j ava. r m . server. useCodebaseOnl y issettot r ue, then the VM will
load classes from either alocation specified by the CLASSPATH environment variable or the URL
specified in this property.

By using different combinations of the available system properties, a number of different RMI system
configurations can be created.

Closed. All classes used by clients and the server must be located on the VM and referenced by the
CLASSPATH environment variable. No dynamic class loading is supported.

Server based. A client applet isloaded from the server's CODEBASE along with all supporting
classes. Thisissimilar to the way applets are |loaded from the same HTTP server that supports the
applet's web page.

Client dynamic. The primary classes are loaded by referencing the CLASSPATH environment
variable of the VM for the client. Supporting classes are loaded by the
java.rm .server.RM C assLoader froman HTTP or FTP server on the network at a

location specified by the server.

Server-dynamic. The primary classes are loaded by referencing the CLASSPATH environment
variable of the VM for the server. Supporting classes are loaded by the
java.rm .server.RM C assLoader froman HTTP or FTP server on the network at a

location specified by the client.

Bootstrap client. In this configuration, all of the client code isloaded froman HTTP or FTP server
across the network. The only code residing on the client machine is a small bootstrap |oader.

Bootstrap server. In this configuration, all of the server code isloaded froman HTTP or FTP server
located on the network. The only code residing on the server machine is a small bootstrap loader.

The exercise for this section involves creating a bootstrap client configuration. Please follow the
directions carefully as different files need to be placed and compiled within separate directories.

Back to Top

Exercise

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (22 of 31) [2010-10-16 19:55:36]

http://java.sun.com/products/jdk/1.2/index.html
http://java.sun.com/products/jdk/1.2/index.html
http://java.sun.com/developer/onlineTraining/rmi/#top

jGuru: Remote Method Invocation (RMI)

5. Bootstrap Example

Firewall Issues

Firewalls are inevitably encountered by any networked enterprise application that has to operate
beyond the sheltering confines of an Intranet. Typicaly, firewalls block all network traffic, with the
exception of those intended for certain "well-known" ports.

Since the RMI transport layer opens dynamic socket connections between the client and the server to
facilitate communication, the JRMP traffic istypically blocked by most firewall implementations.
But luckily, the RMI designers had anticipated this problem, and a solution is provided by the RMI
transport layer itself. To get across firewalls, RMI makes use of HT TP tunneling by encapsulating the
RMI callswithin an HTTP POST request.

Now, examine how HTTP tunneling of RMI traffic works by taking a closer look at the possible
scenarios: the RMI client, the server, or both can be operating from behind a firewall. The following
diagram shows the scenario where an RMI client located behind a firewall communicates with an
external server.

Prosy

S ETVED
HTTF-encapialated
BT Call

Firewall

In the above scenario, when the transport layer tries to establish a connection with the server, it is
blocked by the firewall. When this happens, the RM| transport layer automatically retries by
encapsulating the JRMP call datawithin an HTTP POST request. The HTTP POST header for the
call isinthe form:

http:// host nane: port

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (23 of 31) [2010-10-16 19:55:37]

http://java.sun.com/developer/onlineTraining/rmi/exercises/BootstrapExample/index.html

jGuru: Remote Method Invocation (RMI)

If aclient isbehind afirewall, it isimportant that you also set the system property

htt p. pr oxyHost appropriately. Since aimost al firewalls recognize the HT TP protocol, the
specified proxy server should be able to forward the call directly to the port on which the remote
server islistening on the outside. Once the HTTP-encapsulated JRMP data is received at the server, it
Is automatically decoded and dispatched by the RMI transport layer. The reply isthen sent back to
client as HT TP-encapsul ated data.

The following diagram shows the scenario when both the RMI client and server are behind firewalls,
or when the client proxy server can forward data only to the well-known HTTP port 80 at the server.

Firewsall Firewsall

In this case, the RMI transport layer uses one additional level of indirection! Thisis because the client
can no longer send the HT TP-encapsulated JRMP calls to arbitrary ports as the server is also behind a
firewall. Instead, the RMI transport layer places JRMP call inside the HTTP packets and send those
packets to port 80 of the server. The HTTP POST header is now in the form

htt p: // host nane: 80/ cgi - bi n/j ava-rm ?f or war d=<port >

This causes the execution of the CGI script, j ava-rm . cgi , whichinturninvokesaloca JVM,
unbundles the HT TP packet, and forwards the call to the server process on the designated port. RMI
JRMP-based replies from the server are sent back asHTTP REPLY packets to the originating client
port where RMI again unbundles the information and sends it to the appropriate RM|I stub.

Of course, for thisto work, thej ava-rm . cgi scri pt,whichisincluded within the standard
JDK 1.1 or Java 2 platform distribution, must be preconfigured with the path of the Java interpreter
and located within the web server'scgi - bi n directory. It isaso equally important for the RMI
server to specify the host's fully-qualified domain name via a system property upon startup to avoid

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (24 of 31) [2010-10-16 19:55:37]

jGuru: Remote Method Invocation (RMI)

any DNS resolution problems, as:

java.rm . server. host nane=host. domai n. com

Note: Rather than making use of CGlI script for the call forwarding, it is more efficient to use a servlet
implementation of the same. Y ou should be able to obtain the servlet's source code from Sun's RM|

FAQ.

It should be noted that notwithstanding the built-in mechanism for overcoming firewalls, RMI suffers
asignificant performance degradation imposed by HTTP tunneling. There are other disadvantagesto
using HTTP tunneling too. For instance, your RMI application will no longer be able to multiplex
JRMP calls on a single connection, since it would now follow a discrete request/response protocol.
Additionally, using thej ava-r m . cgi script exposes afairly large security loophole on your
server machine, as now, the script can redirect any incoming request to any port, completely
bypassing your firewalling mechanism. Developers should also note that using HT TP tunneling
precludes RMI applications from using callbacks, which in itself could be a major design constraint.
Consequently, if aclient detects afirewall, it can always disable the default HT TP tunneling feature
by setting the property:

java.rm .server. di sabl eH t p=true
Back to Top
Distributed Garbage Collection

One of the joys of programming for the Java platform is not worrying about memory allocation. The
JVM has an automatic garbage collector that will reclaim the memory from any object that has been
discarded by the running program.

One of the design objectives for RM| was seamless integration into the Java programming language,
which includes garbage collection. Designing an efficient single-machine garbage collector is hard,
designing a distributed garbage collector is very hard.

The RMI system provides a reference counting distributed garbage collection algorithm based on
Modula-3's Network Objects. This system works by having the server keep track of which clients
have requested access to remote objects running on the server. When areference is made, the server
marks the object as "dirty" and when aclient drops the reference, it is marked as being "clean."

The interface to the DGC (distributed garbage collector) is hidden in the stubs and skeletons layer.
However, aremote object can implement thej ava. rm . server . Unr ef er enced interface and

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (25 of 31) [2010-10-16 19:55:37]

http://java.sun.com/products/jdk/1.2/docs/guide/rmi/faq.html#servlet
http://java.sun.com/products/jdk/1.2/docs/guide/rmi/faq.html#servlet
http://java.sun.com/developer/onlineTraining/rmi/#top
http://java.sun.com/products/jdk/1.2/index.html

jGuru: Remote Method Invocation (RMI)

get anotification viathe unr ef er enced method when there are no longer any clients holding a
live reference.

In addition to the reference counting mechanism, alive client reference has alease with a specified
time. If aclient does not refresh the connection to the remote object before the lease term expires, the
reference is considered to be dead and the remote object may be garbage collected. The leasetimeis
controlled by the system property j ava. rm . dgc. | easeVal ue. Thevaueisin milliseconds
and defaults to 10 minutes.

Because of these garbage collection semantics, a client must be prepared to deal with remote objects
that have "disappeared.”

In the following exercise, you will have the opportunity to experiment with the distributed garbage
collector.

Exercise

6. Distributed Garbage Collection

Back to Top

Serializing Remote Objects

When designing a system using RMI, there are times when you would like to have the flexibility to
control where aremote object runs. Today, when a remote object is brought to life on a particular
JVM, it will remain on that JVM. Y ou cannot "send" the remote object to another machine for
execution at anew location. RMI makes it difficult to have the option of running a service locally or
remotely.

The very reason RMI makes it easy to build some distributed application can make it difficult to
move objects between JVMs. When you declare that an object implementsthej ava. r m . Renot e

interface, RMI will prevent it from being serialized and sent between JVMs as a parameter. Instead of
sending the implementation classfor aj ava. r m . Renot e interface, RMI substitutes the stub

class. Because this substitution occursin the RMI internal code, one cannot intercept this operation.

There are two different ways to solve this problem. The first involves manually serializing the remote
object and sending it to the other VM. To do this, there are two strategies. The first strategy isto
create an Qbj ect | nput St r eamand Obj ect Qut put St r eamconnection between the two
JVMs. With this, you can explicitly write the remote object to the stream. The second way isto
serialize the object into abyt e array and send the byt e array as the return value to an RMI method
call. Both of these techniques require that you code at alevel below RMI and this can lead to extra

file:///[E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (26 of 31) [2010-10-16 19:55:37]

http://java.sun.com/products/jdk/1.2/index.html#unreferenced()
http://java.sun.com/developer/onlineTraining/rmi/exercises/DistributedGarbageCollector/index.html
http://java.sun.com/developer/onlineTraining/rmi/#top
http://java.sun.com/products/jdk/1.2/docs/api/java/rmi/Remote.html
http://java.sun.com/products/jdk/1.2/docs/api/java/rmi/Remote.html

jGuru: Remote Method Invocation (RMI)

coding and maintenance complications.

In a second strategy, you can use a delegation pattern. In this pattern, you place the core functionality
into aclass that:

. Doesnot implementj ava. rm . Renot e
. Doesimplementj ava.i o. Seri ali zabl e

Then you build aremote interface that declares remote access to the functionality. When you create
an implementation of the remote interface, instead of reimplementing the functionality, you alow the
remote implementation to defer, or delegate, to an instance of the local version.

Now look at the building blocks of this pattern. Note that thisis avery ssmple example. A rea-world
example would have a significant number of local fields and methods.

/1 Place functionality in a |local object
public class Local Model
i npl enents java.io. Serializable

{
public String getVersi onNunber ()
{
return "Version 1.0";
}
}

Next, you declareanj ava. r m . Renot e interface that defines the same functionality:

i nt erface Renot eMbdel Ref
extends java.rni.Renote
{

String get Versi onNunber ()
throws java.rm . Renot eExcepti on;

The implementation of the remote service accepts areference to the Local Model and delegates the
real work to that object:

file:/lIE[/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (27 of 31) [2010-10-16 19:55:37]

http://java.sun.com/products/jdk/1.2/docs/api/java/rmi/Remote.html
http://java.sun.com/products/jdk/1.2/docs/api/java/io/Serializable.html
http://java.sun.com/products/jdk/1.2/docs/api/java/rmi/Remote.html

jGuru: Remote Method Invocation (RMI)

public class Renot eMdel | npl
ext ends
java.rm . server. Uni cast Renot eObj ect
i mpl emrent s Renot eModel Ref

{
Local Mbdel I m

publ i ¢ Renot eModel | npl (Local Model | m
throws java.rm . Renot eExcepti on
{

super () ;
this.Ilm=1m
}

/! Delegate to the |ocal

[/ model inplenentation

public String getVersionNunber ()
throws java.rm . Renot eException

{

}
}

return | mget Versi onNunber () ;

Finally, you define a remote service that provides accessto clients. Thisisdonewith aj ava. r
m . Renot e interface and an implementation:

i nterface RenoteMdel Mgr extends java.rm . Renote

{
Renot eMbdel Ref get Renpt eModel Ref ()

throws java.rm . Renot eExcepti on;

Local Model get Local Model ()
throws java.rm . Renot eExcepti on;

public cl ass Renot eModel Myr | npl
ext ends
java.rni.server. Uni cast Renpt eQbj ect
i mpl ement s Renot eModel Myr

{
Local Mbdel I m

Renot eMbdel | npl rm npl ;

publ i ¢ Renot eMbdel Myr | npl ()
throws java.rm . Renot eException
{

super();

file:/l/E[/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (28 of 31) [2010-10-16 19:55:37]

http://java.sun.com/products/jdk/1.2/docs/api/java/rmi/Remote.html
http://java.sun.com/products/jdk/1.2/docs/api/java/rmi/Remote.html

jGuru: Remote Method Invocation (RMI)

}

publ i ¢ Renot eModel Ref get Renot eMbdel Ref ()
throws java.rm . Renot eExcepti on

{
/1l Lazy instantiation of del gatee
if (null ==1m
{
I m = new Local Model ();
}

/1 Lazy instantiation of
/'l Remote Interface Wapper

if (null == rmnpl)
{
rm nmpl = new Renot eModel I npl (I mM;
}
return ((RenoptelModel Ref) rmnpl);

}

publ i c Local Model getLocal Mbdel ()
throws java.rm . Renot eExcepti on
{

// Return a reference to the

[/ sane Local Model

/1l that exists as the del agetee
//of the RM renote

/1 object wapper

/1l Lazy instantiation of del gatee

if (null ==1m
{
I m= new Local Model ();
}
return Im
}
}
Back to Top
Exercises

7. Serializing Remote Objects: Server
8. Serializing Remote Objects: Client

Mobile Agent Architectures

file:/lIE[/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (29 of 31) [2010-10-16 19:55:37]

http://java.sun.com/developer/onlineTraining/rmi/#top
http://java.sun.com/developer/onlineTraining/rmi/exercises/LocalRemoteServer/index.html
http://java.sun.com/developer/onlineTraining/rmi/exercises/LocalRemoteClient/index.html

jGuru: Remote Method Invocation (RMI)

The solution to the mobile computing agent using RMI is, at best, a work-around. Other distributed
Java architectures have been designed to address this issue and others. These are collectively called
mobile agent architectures. Some examples are IBM's Aglets Architecture and ObjectSpace's

Voyager System. These systems are specifically designed to allow and support the movement of Java
objects between JVMs, carrying their data along with their execution instructions.

Alternate Implementations

This module has covered the RMI architecture and Sun's implementation. There are other
implementations available, including:

« NinjaRMI
A free implementation built at the University of California, Berkeley. Ninja supports the JDK
1.1 version of RMI, with extensions.

. BEA Weblogic Server

BEA Weblogic Server is ahigh performance, secure Application Server that supports RMI,
Microsoft COM, CORBA, and EJB (Enterprise JavaBeans), and other services.

. Voyager
ObjectSpace's Voyager product transparently supports RMI along with a proprietary DOM,
CORBA, EJB, Microsoft's DCOM, and transaction services.

Additional Resources
Books and Articles

. Design Patterns, by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (The

Gang of Four)
. Sun'sRMI FAQ

. RMI over I1OP
. RMI-USERS Mailing List Archive
.« Implementing Callbacks with Java RMI, by Govind Seshadri, Dr. Dobb's Journal, March 1998

Copyright 1996-2000 jGuru.com. All Rights Reserved.

Back to Top
About This Course

Exercises
Download

file:/lIE[/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (30 of 31) [2010-10-16 19:55:37]

http://www.alphaworks.ibm.com/formula/
http://www.objectspace.com/
http://www.objectspace.com/
http://www.cs.berkeley.edu/~mdw/proj/ninja/
http://www.beasys.com/products/index.html
http://www.objectspace.com/
http://hillside.net/patterns/DPBook/DPBook.html
http://java.sun.com/products/jdk/1.2/docs/guide/rmi/faq.html
http://www.ibm.com/java/jdk/rmi-iiop/
http://archives.java.sun.com/archives/rmi-users.html
http://www.ddj.com/ftp/1998/1998_03/jqa398.txt
http://www.jguru.com/
http://java.sun.com/developer/onlineTraining/rmi/#top
http://java.sun.com/developer/onlineTraining/rmi/index.html
http://java.sun.com/developer/onlineTraining/rmi/exercises.html
http://java.sun.com/developer/onlineTraining/Downloads/rmi.zip

jGuru: Remote Method Invocation (RMI)

1 Asused on this web site, the terms "Java virtual machine" or "JVM" mean avirtual machine for the
Java platform.

file:/l/E[/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (31 of 31) [2010-10-16 19:55:37]

	Local Disk
	jGuru: Remote Method Invocation (RMI)

