
jGuru: Remote Method Invocation (RMI)

sun.com

http://java.sun.com/developer/onlineTraining/rmi/RMI.html
Oct 16,
2010

Tutorials & Code Camps

jGuru: Remote Method Invocation (RMI)

By

[About This Course| Exercises| Download]

This short course covers the fundamentals of the Remote Method Invocation (RMI) technology, as
found in the Java 2 platform.

Course Outline

● Introduction to Distributed Computing with RMI
❍ Goals
❍ Comparison of Distributed and Nondistributed Java Programs

● Java RMI Architecture
❍ Interfaces: The Heart of RMI
❍ RMI Architecture Layers

■ Stub and Skeleton Layer
■ Remote Reference Layer
■ Transport Layer

● Naming Remote Objects

● Using RMI
❍ Interfaces
❍ Implementation
❍ Stubs and Skeletons
❍ Host Server

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (1 of 31) [2010-10-16 19:55:36]

http://www.sun.com/
http://www.sun.com/
http://www.jguru.com/
http://java.sun.com/developer/onlineTraining/rmi/index.html
http://java.sun.com/developer/onlineTraining/rmi/exercises.html
http://java.sun.com/developer/onlineTraining/Downloads/rmi.zip
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#IntroRMI
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#RMIArchitectureGoals
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#Comparison
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#JavaRMIArchitecture
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#RMIInterfaces
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#RMIArchitectureLayers
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#RMIStubAndSkeletonLayer
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#RMIArchitectureRemoteReferenceLayer
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#RMIArchitectureTransportLayer
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#NamingRemoteObjects
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#UsingRMI
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#RMIInterfaces2
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#RMIImplementations
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#RMIStubsAndSkeletons
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#RMIHostingServer

jGuru: Remote Method Invocation (RMI)

❍ Client
❍ Running the RMI System

● Parameters in RMI

● Parameters in a Single Java Virtual Machine1
❍ Primitive Parameters
❍ Object Parameters
❍ Remote Object Parameters

● RMI Client-Side Callbacks

● Distributing and Installing RMI Software
❍ Distributing RMI Classes
❍ Automatic Distribution of Classes
❍ Firewall Issues

● Distributed Garbage Collection

● Serializing Remote Objects

● Mobile Agent Architectures

● Alternate Implementations

● Additional Resources
❍ Books and Articles

Introduction to Distributed Computing with RMI

Remote Method Invocation (RMI) technology, first introduced in JDK 1.1, elevates network
programming to a higher plane. Although RMI is relatively easy to use, it is a remarkably powerful
technology and exposes the average Java developer to an entirely new paradigm--the world of
distributed object computing.

This course provides you with an in-depth introduction to this versatile technology. RMI has evolved
considerably since JDK 1.1, and has been significantly upgraded under the Java 2 SDK. Where
applicable, the differences between the two releases will be indicated.

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (2 of 31) [2010-10-16 19:55:36]

http://java.sun.com/developer/onlineTraining/rmi/RMI.html#RMIClient
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#RunningAnRMISystem
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#ParametersInRMI
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#SingleJVM
http://java.sun.com/developer/onlineTraining/rmi/#TJVM
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#PrimitiveParameters
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#ObjectParameters
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#RemoteObjectParameters
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#RMIClientSideCallbacks
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#RMISoftwareInstallation
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#DistributingRMIClasses
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#ClassDistribution
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#FirewallIssues
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#DistributedGarbageCollection
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#SerializingRemoteObjects
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#MobileAgentArchitectures
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#AlternateImplementations
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#AdditionalResources
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#BooksAndArticles

jGuru: Remote Method Invocation (RMI)

Back to Top

Goals

A primary goal for the RMI designers was to allow programmers to develop distributed Java
programs with the same syntax and semantics used for non-distributed programs. To do this, they had
to carefully map how Java classes and objects work in a single Java Virtual Machine1 (JVM) to a new
model of how classes and objects would work in a distributed (multiple JVM) computing
environment.

This section introduces the RMI architecture from the perspective of the distributed or remote Java
objects, and explores their differences through the behavior of local Java objects. The RMI
architecture defines how objects behave, how and when exceptions can occur, how memory is
managed, and how parameters are passed to, and returned from, remote methods.

Back to Top

Comparison of Distributed and Nondistributed Java Programs

The RMI architects tried to make the use of distributed Java objects similar to using local Java
objects. While they succeeded, some important differences are listed in the table below.

Do not worry if you do not understand all of the difference. They will become clear as you explore
the RMI architecture. You can use this table as a reference as you learn about RMI.

Local Object Remote Object

Object Definition A local object is defined by
a Java class.

A remote object's exported behavior is defined
by an interface that must extend the Remote
interface.

Object
Implementation

A local object is
implemented by its Java
class.

A remote object's behavior is executed by a Java
class that implements the remote interface.

Object Creation A new instance of a local
object is created by the new
operator.

A new instance of a remote object is created on
the host computer with the new operator. A
client cannot directly create a new remote object
(unless using Java 2 Remote Object Activation).

Object Access A local object is accessed
directly via an object
reference variable.

A remote object is accessed via an object
reference variable which points to a proxy stub
implementation of the remote interface.

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (3 of 31) [2010-10-16 19:55:36]

http://java.sun.com/developer/onlineTraining/rmi/#top
http://java.sun.com/developer/onlineTraining/rmi/#TJVM
http://java.sun.com/developer/onlineTraining/rmi/#top
http://java.sun.com/products/jdk/1.2/docs/api/java/rmi/Remote.html

jGuru: Remote Method Invocation (RMI)

References In a single JVM, an object
reference points directly at
an object in the heap.

A "remote reference" is a pointer to a proxy
object (a "stub") in the local heap. That stub
contains information that allows it to connect to
a remote object, which contains the
implementation of the methods.

Active References In a single JVM, an object is
considered "alive" if there is
at least one reference to it.

In a distributed environment, remote JVMs may
crash, and network connections may be lost. A
remote object is considered to have an active
remote reference to it if it has been accessed
within a certain time period (the lease period). If
all remote references have been explicitly
dropped, or if all remote references have expired
leases, then a remote object is available for
distributed garbage collection.

Finalization If an object implements the
finalize() method, it is
called before an object is
reclaimed by the garbage
collector.

If a remote object implements the
Unreferenced interface, the unreferenced
method of that interface is called when all
remote references have been dropped.

Garbage
Collection

When all local references to
an object have been dropped,
an object becomes a
candidate for garbage
collection.

The distributed garbage collector works with the
local garbage collector. If there are no remote
references and all local references to a remote
object have been dropped, then it becomes a
candidate for garbage collection through the
normal means.

Exceptions Exceptions are either
Runtime exceptions or
Exceptions. The Java
compiler forces a program to
handle all Exceptions.

RMI forces programs to deal with any possible
RemoteException objects that may be
thrown. This was done to ensure the robustness
of distributed applications.

Back to Top

Java RMI Architecture

The design goal for the RMI architecture was to create a Java distributed object model that integrates
naturally into the Java programming language and the local object model. RMI architects have
succeeded; creating a system that extends the safety and robustness of the Java architecture to the
distributed computing world.

Interfaces: The Heart of RMI

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (4 of 31) [2010-10-16 19:55:36]

http://www.javasoft.com/docs/books/jls/html/12.doc.html#44748
http://java.sun.com/products/jdk/1.2/index.html
http://java.sun.com/products/jdk/1.2/index.html
http://java.sun.com/developer/onlineTraining/rmi/#top

jGuru: Remote Method Invocation (RMI)

The RMI architecture is based on one important principle: the definition of behavior and the
implementation of that behavior are separate concepts. RMI allows the code that defines the behavior
and the code that implements the behavior to remain separate and to run on separate JVMs.

This fits nicely with the needs of a distributed system where clients are concerned about the definition
of a service and servers are focused on providing the service.

Specifically, in RMI, the definition of a remote service is coded using a Java interface. The
implementation of the remote service is coded in a class. Therefore, the key to understanding RMI is
to remember that interfaces define behavior and classes define implementation.

While the following diagram illustrates this separation,

remember that a Java interface does not contain executable code. RMI supports two classes that
implement the same interface. The first class is the implementation of the behavior, and it runs on the
server. The second class acts as a proxy for the remote service and it runs on the client. This is shown
in the following diagram.

A client program makes method calls on the proxy object, RMI sends the request to the remote JVM,
and forwards it to the implementation. Any return values provided by the implementation are sent

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (5 of 31) [2010-10-16 19:55:36]

jGuru: Remote Method Invocation (RMI)

back to the proxy and then to the client's program.

Back to Top

RMI Architecture Layers

With an understanding of the high-level RMI architecture, take a look under the covers to see its
implementation.

The RMI implementation is essentially built from three abstraction layers. The first is the Stub and
Skeleton layer, which lies just beneath the view of the developer. This layer intercepts method calls
made by the client to the interface reference variable and redirects these calls to a remote RMI
service.

The next layer is the Remote Reference Layer. This layer understands how to interpret and manage
references made from clients to the remote service objects. In JDK 1.1, this layer connects clients to
remote service objects that are running and exported on a server. The connection is a one-to-one
(unicast) link. In the Java 2 SDK, this layer was enhanced to support the activation of dormant remote
service objects via Remote Object Activation.

The transport layer is based on TCP/IP connections between machines in a network. It provides basic
connectivity, as well as some firewall penetration strategies.

By using a layered architecture each of the layers could be enhanced or replaced without affecting the
rest of the system. For example, the transport layer could be replaced by a UDP/IP layer without
affecting the upper layers.

Back to Top

Stub and Skeleton Layer

The stub and skeleton layer of RMI lie just beneath the view of the Java developer. In this layer, RMI
uses the Proxy design pattern as described in the book, Design Patterns by Gamma, Helm, Johnson

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (6 of 31) [2010-10-16 19:55:36]

http://java.sun.com/developer/onlineTraining/rmi/#top
http://java.sun.com/developer/onlineTraining/rmi/#top
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#BooksAndArticles

jGuru: Remote Method Invocation (RMI)

and Vlissides. In the Proxy pattern, an object in one context is represented by another (the proxy) in a
separate context. The proxy knows how to forward method calls between the participating objects.
The following class diagram illustrates the Proxy pattern.

In RMI's use of the Proxy pattern, the stub class plays the role of the proxy, and the remote service
implementation class plays the role of the RealSubject.

A skeleton is a helper class that is generated for RMI to use. The skeleton understands how to
communicate with the stub across the RMI link. The skeleton carries on a conversation with the stub;
it reads the parameters for the method call from the link, makes the call to the remote service
implementation object, accepts the return value, and then writes the return value back to the stub.

In the Java 2 SDK implementation of RMI, the new wire protocol has made skeleton classes obsolete.
RMI uses reflection to make the connection to the remote service object. You only have to worry
about skeleton classes and objects in JDK 1.1 and JDK 1.1 compatible system implementations.

Remote Reference Layer

The Remote Reference Layers defines and supports the invocation semantics of the RMI connection.
This layer provides a RemoteRef object that represents the link to the remote service
implementation object.

The stub objects use the invoke() method in RemoteRef to forward the method call. The
RemoteRef object understands the invocation semantics for remote services.

The JDK 1.1 implementation of RMI provides only one way for clients to connect to remote service
implementations: a unicast, point-to-point connection. Before a client can use a remote service, the
remote service must be instantiated on the server and exported to the RMI system. (If it is the primary
service, it must also be named and registered in the RMI Registry).

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (7 of 31) [2010-10-16 19:55:36]

http://java.sun.com/developer/onlineTraining/rmi/RMI.html#UsingRMI

jGuru: Remote Method Invocation (RMI)

The Java 2 SDK implementation of RMI adds a new semantic for the client-server connection. In this
version, RMI supports activatable remote objects. When a method call is made to the proxy for an
activatable object, RMI determines if the remote service implementation object is dormant. If it is
dormant, RMI will instantiate the object and restore its state from a disk file. Once an activatable
object is in memory, it behaves just like JDK 1.1 remote service implementation objects.

Other types of connection semantics are possible. For example, with multicast, a single proxy could
send a method request to multiple implementations simultaneously and accept the first reply (this
improves response time and possibly improves availability). In the future, Sun may add additional
invocation semantics to RMI.

Back to Top

Transport Layer

The Transport Layer makes the connection between JVMs. All connections are stream-based network
connections that use TCP/IP.

Even if two JVMs are running on the same physical computer, they connect through their host
computer's TCP/IP network protocol stack. (This is why you must have an operational TCP/IP
configuration on your computer to run the Exercises in this course). The following diagram shows the
unfettered use of TCP/IP connections between JVMs.

As you know, TCP/IP provides a persistent, stream-based connection between two machines based on
an IP address and port number at each end. Usually a DNS name is used instead of an IP address; this
means you could talk about a TCP/IP connection between flicka.magelang.com:3452 and
rosa.jguru.com:4432. In the current release of RMI, TCP/IP connections are used as the
foundation for all machine-to-machine connections.

On top of TCP/IP, RMI uses a wire level protocol called Java Remote Method Protocol (JRMP).
JRMP is a proprietary, stream-based protocol that is only partially specified is now in two

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (8 of 31) [2010-10-16 19:55:36]

http://java.sun.com/developer/onlineTraining/rmi/#top
http://java.sun.com/products/jdk/1.2/index.html#60

jGuru: Remote Method Invocation (RMI)

versions. The first version was released with the JDK 1.1 version of RMI and required the use of
Skeleton classes on the server. The second version was released with the Java 2 SDK. It has been
optimized for performance and does not require skeleton classes. (Note that some alternate
implementations, such as BEA Weblogic and NinjaRMI do not use JRMP, but instead use their own
wire level protocol. ObjectSpace's Voyager does recognize JRMP and will interoperate with RMI
at the wire level.) Some other changes with the Java 2 SDK are that RMI service interfaces are not
required to extend from java.rmi.Remote and their service methods do not necessarily throw
RemoteException.

Sun and IBM have jointly worked on the next version of RMI, called RMI-IIOP, which will be
available with Java 2 SDK Version 1.3. The interesting thing about RMI-IIOP is that instead of using
JRMP, it will use the Object Management Group (OMG) Internet Inter-ORB Protocol, IIOP, to
communicate between clients and servers.

The OMG is a group of more than 800 members that defines a vendor-neutral, distributed object
architecture called Common Object Request Broker Architecture (CORBA). CORBA Object Request
Broker (ORB) clients and servers communicate with each other using IIOP. With the adoption of the
Objects-by-Value extension to CORBA and the Java Language to IDL Mapping proposal, the ground
work was set for direct RMI to CORBA integration. This new RMI-IIOP implementation supports
most of the RMI feature set, except for:

● java.rmi.server.RMISocketFactory
● UnicastRemoteObject
● Unreferenced
● The DGC interfaces

The RMI transport layer is designed to make a connection between clients and server, even in the
face of networking obstacles.

While the transport layer prefers to use multiple TCP/IP connections, some network configurations
only allow a single TCP/IP connection between a client and server (some browsers restrict applets to
a single network connection back to their hosting server).

In this case, the transport layer multiplexes multiple virtual connections within a single TCP/IP
connection.

Naming Remote Objects

During the presentation of the RMI Architecture, one question has been repeatedly postponed: "How
does a client find an RMI remote service? " Now you'll find the answer to that question. Clients find
remote services by using a naming or directory service. This may seem like circular logic. How can a
client locate a service by using a service? In fact, that is exactly the case. A naming or directory

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (9 of 31) [2010-10-16 19:55:36]

http://java.sun.com/developer/onlineTraining/rmi/RMI.html#AlternateImplementations
http://www.omg.org/
http://java.sun.com/products/jdk/1.2/index.html
http://java.sun.com/products/jdk/1.2/index.html
http://java.sun.com/products/jdk/1.2/index.html

jGuru: Remote Method Invocation (RMI)

service is run on a well-known host and port number.

(Well-known meaning everyone in an organization knowing what it is).

RMI can use many different directory services, including the Java Naming and Directory Interface
(JNDI). RMI itself includes a simple service called the RMI Registry, rmiregistry. The RMI
Registry runs on each machine that hosts remote service objects and accepts queries for services, by
default on port 1099.

On a host machine, a server program creates a remote service by first creating a local object that
implements that service. Next, it exports that object to RMI. When the object is exported, RMI
creates a listening service that waits for clients to connect and request the service. After exporting, the
server registers the object in the RMI Registry under a public name.

On the client side, the RMI Registry is accessed through the static class Naming. It provides the
method lookup() that a client uses to query a registry. The method lookup() accepts a URL that
specifies the server host name and the name of the desired service. The method returns a remote
reference to the service object. The URL takes the form:

rmi://<host_name>
 [:<name_service_port>]
 /<service_name>

where the host_name is a name recognized on the local area network (LAN) or a DNS name on the
Internet. The name_service_port only needs to be specified only if the naming service is
running on a different port to the default 1099.

Back to Top

Using RMI

It is now time to build a working RMI system and get hands-on experience. In this section, you will
build a simple remote calculator service and use it from a client program.

A working RMI system is composed of several parts.

● Interface definitions for the remote services
● Implementations of the remote services
● Stub and Skeleton files
● A server to host the remote services
● An RMI Naming service that allows clients to find the remote services

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (10 of 31) [2010-10-16 19:55:36]

http://java.sun.com/products/jdk/1.2/docs/api/java/rmi/Naming.html
http://java.sun.com/products/jdk/1.2/docs/api/java/rmi/Naming.html#lookup(java.lang.String)
http://java.sun.com/developer/onlineTraining/rmi/#top

jGuru: Remote Method Invocation (RMI)

● A class file provider (an HTTP or FTP server)
● A client program that needs the remote services

In the next sections, you will build a simple RMI system in a step-by-step fashion. You are
encouraged to create a fresh subdirectory on your computer and create these files as you read the text.

To simplify things, you will use a single directory for the client and server code. By running the client
and the server out of the same directory, you will not have to set up an HTTP or FTP server to
provide the class files. (Details about how to use HTTP and FTP servers as class file providers will be
covered in the section on Distributing and Installing RMI Software)

Assuming that the RMI system is already designed, you take the following steps to build a system:

1. Write and compile Java code for interfaces
2. Write and compile Java code for implementation classes
3. Generate Stub and Skeleton class files from the implementation classes
4. Write Java code for a remote service host program
5. Develop Java code for RMI client program
6. Install and run RMI system

Back to Top

1. Interfaces

The first step is to write and compile the Java code for the service interface. The
Calculator interface defines all of the remote features offered by the service:

public interface Calculator
 extends java.rmi.Remote {
 public long add(long a, long b)
 throws java.rmi.RemoteException;

 public long sub(long a, long b)
 throws java.rmi.RemoteException;

 public long mul(long a, long b)
 throws java.rmi.RemoteException;

 public long div(long a, long b)
 throws java.rmi.RemoteException;
}

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (11 of 31) [2010-10-16 19:55:36]

http://java.sun.com/developer/onlineTraining/rmi/RMI.html#RMISoftwareInstallation
http://java.sun.com/developer/onlineTraining/rmi/#top

jGuru: Remote Method Invocation (RMI)

Notice this interface extends Remote, and each method signature declares that it may throw a
RemoteException object.

Copy this file to your directory and compile it with the Java compiler:

>javac Calculator.java

2. Implementation

Next, you write the implementation for the remote service. This is the CalculatorImpl
class:

public class CalculatorImpl
 extends
 java.rmi.server.UnicastRemoteObject
 implements Calculator {

 // Implementations must have an
 //explicit constructor
 // in order to declare the
 //RemoteException exception
 public CalculatorImpl()
 throws java.rmi.RemoteException {
 super();
 }

 public long add(long a, long b)
 throws java.rmi.RemoteException {
 return a + b;
 }

 public long sub(long a, long b)
 throws java.rmi.RemoteException {
 return a - b;
 }

 public long mul(long a, long b)
 throws java.rmi.RemoteException {
 return a * b;
 }

 public long div(long a, long b)
 throws java.rmi.RemoteException {
 return a / b;
 }
}

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (12 of 31) [2010-10-16 19:55:36]

jGuru: Remote Method Invocation (RMI)

Again, copy this code into your directory and compile it.

The implementation class uses UnicastRemoteObject to link into the RMI system. In the
example the implementation class directly extends UnicastRemoteObject. This is not a
requirement. A class that does not extend UnicastRemoteObject may use its
exportObject() method to be linked into RMI.

When a class extends UnicastRemoteObject, it must provide a constructor that declares
that it may throw a RemoteException object. When this constructor calls super(), it
activates code in UnicastRemoteObject that performs the RMI linking and remote
object initialization.

3. Stubs and Skeletons

You next use the RMI compiler, rmic, to generate the stub and skeleton files. The compiler
runs on the remote service implementation class file.

>rmic CalculatorImpl

Try this in your directory. After you run rmic you should find the file
Calculator_Stub.class and, if you are running the Java 2 SDK,
Calculator_Skel.class.

Options for the JDK 1.1 version of the RMI compiler, rmic, are:

Usage: rmic <options> <class names>

where <options> includes:
 -keep Do not delete intermediate
 generated source files
 -keepgenerated (same as "-keep")
 -g Generate debugging info
 -depend Recompile out-of-date
 files recursively
 -nowarn Generate no warnings
 -verbose Output messages about
 what the compiler is doing
 -classpath <path> Specify where
 to find input source
 and class files
 -d <directory> Specify where to
 place generated class files
 -J<runtime flag> Pass argument
 to the java interpreter

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (13 of 31) [2010-10-16 19:55:36]

http://java.sun.com/products/jdk/1.2/index.html

jGuru: Remote Method Invocation (RMI)

The Java 2 platform version of rmic add three new options:

 -v1.1 Create stubs/skeletons
 for JDK 1.1 stub
 protocol version
 -vcompat (default)
 Create stubs/skeletons compatible
 with both JDK 1.1 and Java 2
 stub protocol versions
 -v1.2 Create stubs for Java 2 stub protocol
 version only

4. Host Server

Remote RMI services must be hosted in a server process. The class CalculatorServer is
a very simple server that provides the bare essentials for hosting.

import java.rmi.Naming;

public class CalculatorServer {

 public CalculatorServer() {
 try {
 Calculator c = new CalculatorImpl();
 Naming.rebind("rmi://localhost:1099/CalculatorService", c);
 } catch (Exception e) {
 System.out.println("Trouble: " + e);
 }
 }

 public static void main(String args[]) {
 new CalculatorServer();
 }
}

Back to Top

5. Client

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (14 of 31) [2010-10-16 19:55:36]

http://java.sun.com/developer/onlineTraining/rmi/#top

jGuru: Remote Method Invocation (RMI)

The source code for the client follows:

import java.rmi.Naming;
import java.rmi.RemoteException;
import java.net.MalformedURLException;
import java.rmi.NotBoundException;

public class CalculatorClient {

 public static void main(String[] args) {
 try {
 Calculator c = (Calculator)
 Naming.lookup(
 "rmi://localhost
 /CalculatorService");
 System.out.println(c.sub(4, 3));
 System.out.println(c.add(4, 5));
 System.out.println(c.mul(3, 6));
 System.out.println(c.div(9, 3));
 }
 catch (MalformedURLException murle) {
 System.out.println();
 System.out.println(
 "MalformedURLException");
 System.out.println(murle);
 }
 catch (RemoteException re) {
 System.out.println();
 System.out.println(
 "RemoteException");
 System.out.println(re);
 }
 catch (NotBoundException nbe) {
 System.out.println();
 System.out.println(
 "NotBoundException");
 System.out.println(nbe);
 }
 catch (
 java.lang.ArithmeticException
 ae) {
 System.out.println();
 System.out.println(
 "java.lang.ArithmeticException");
 System.out.println(ae);
 }
 }
}

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (15 of 31) [2010-10-16 19:55:36]

jGuru: Remote Method Invocation (RMI)

6. Running the RMI System

You are now ready to run the system! You need to start three consoles, one for the server, one
for the client, and one for the RMIRegistry.

Start with the Registry. You must be in the directory that contains the classes you have
written. From there, enter the following:

rmiregistry

If all goes well, the registry will start running and you can switch to the next console.

In the second console start the server hosting the CalculatorService, and enter the
following:

>java CalculatorServer

It will start, load the implementation into memory and wait for a client connection.

In the last console, start the client program.

>java CalculatorClient

If all goes well you will see the following output:

1
9
18
3

That's it; you have created a working RMI system. Even though you ran the three consoles on the
same computer, RMI uses your network stack and TCP/IP to communicate between the three separate
JVMs. This is a full-fledged RMI system.

Back to Top

Exercise

1. UML Definition of RMI Example System
2. Simple Banking System

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (16 of 31) [2010-10-16 19:55:36]

http://java.sun.com/developer/onlineTraining/rmi/#top
http://java.sun.com/developer/onlineTraining/rmi/exercises/UMLDefinition/index.html
http://java.sun.com/developer/onlineTraining/rmi/exercises/SimpleBankingSystem/index.html

jGuru: Remote Method Invocation (RMI)

Parameters in RMI

You have seen that RMI supports method calls to remote objects. When these calls involve passing
parameters or accepting a return value, how does RMI transfer these between JVMs? What semantics
are used? Does RMI support pass-by-value or pass-by-reference? The answer depends on whether the
parameters are primitive data types, objects, or remote objects.

Parameters in a Single JVM

First, review how parameters are passed in a single JVM. The normal semantics for Java technology
is pass-by-value. When a parameter is passed to a method, the JVM makes a copy of the value, places
the copy on the stack and then executes the method. When the code inside a method uses a parameter,
it accesses its stack and uses the copy of the parameter. Values returned from methods are also
copies.

When a primitive data type (boolean, byte, short, int, long, char, float, or double) is
passed as a parameter to a method, the mechanics of pass-by-value are straightforward. The
mechanics of passing an object as a parameter are more complex. Recall that an object resides in heap
memory and is accessed through one or more reference variables. And, while the following code
makes it look like an object is passed to the method println()

String s = "Test";
System.out.println(s);

in the mechanics it is the reference variable that is passed to the method. In the example, a copy of
reference variable s is made (increasing the reference count to the String object by one) and is
placed on the stack. Inside the method, code uses the copy of the reference to access the object.

Now you will see how RMI passes parameters and return values between remote JVMs.

Primitive Parameters

When a primitive data type is passed as a parameter to a remote method, the RMI system passes it by
value. RMI will make a copy of a primitive data type and send it to the remote method. If a method
returns a primitive data type, it is also returned to the calling JVM by value.

Values are passed between JVMs in a standard, machine-independent format. This allows JVMs
running on different platforms to communicate with each other reliably.

Back to Top

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (17 of 31) [2010-10-16 19:55:36]

http://java.sun.com/developer/onlineTraining/rmi/#top

jGuru: Remote Method Invocation (RMI)

Object Parameters

When an object is passed to a remote method, the semantics change from the case of the single JVM.
RMI sends the object itself, not its reference, between JVMs. It is the object that is passed by value,
not the reference to the object. Similarly, when a remote method returns an object, a copy of the
whole object is returned to the calling program.

Unlike primitive data types, sending an object to a remote JVM is a nontrivial task. A Java object can
be simple and self-contained, or it could refer to other Java objects in complex graph-like structure.
Because different JVMs do not share heap memory, RMI must send the referenced object and all
objects it references. (Passing large object graphs can use a lot of CPU time and network bandwidth.)

RMI uses a technology called Object Serialization to transform an object into a linear format that can
then be sent over the network wire. Object serialization essentially flattens an object and any objects
it references. Serialized objects can be de-serialized in the memory of the remote JVM and made
ready for use by a Java program.

Remote Object Parameters

RMI introduces a third type of parameter to consider: remote objects. As you have seen, a client
program can obtain a reference to a remote object through the RMI Registry program. There is
another way in which a client can obtain a remote reference, it can be returned to the client from a
method call. In the following code, the BankManager service getAccount() method is used to
obtain a remote reference to an Account remote service.

BankManager bm;
Account a;
try {
 bm = (BankManager) Naming.lookup(
 "rmi://BankServer
 /BankManagerService"
);
 a = bm.getAccount("jGuru");
 // Code that uses the account
}
catch (RemoteException re) {
}

In the implementation of getAccount(), the method returns a (local) reference to the remote
service.

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (18 of 31) [2010-10-16 19:55:36]

http://java.sun.com/developer/onlineTraining/rmi/RMI.html#NamingRemoteObjects

jGuru: Remote Method Invocation (RMI)

public Account
 getAccount(String accountName) {
 // Code to find the matching account
 AccountImpl ai =
 // return reference from search
 return ai;
}

When a method returns a local reference to an exported remote object, RMI does not return that
object. Instead, it substitutes another object (the remote proxy for that service) in the return stream.

The following diagram illustrates how RMI method calls might be used to:

● Return a remote reference from Server to Client A
● Send the remote reference from Client A to Client B
● Send the remote reference from Client B back to Server

Notice that when the AccountImpl object is returned to Client A, the Account proxy object is
substituted. Subsequent method calls continue to send the reference first to Client B and then back to
Server. During this process, the reference continues to refer to one instance of the remote service.

It is particularly interesting to note that when the reference is returned to Server, it is not converted
into a local reference to the implementation object. While this would result in a speed improvement,
maintaining this indirection ensures that the semantics of using a remote reference is maintained.

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (19 of 31) [2010-10-16 19:55:36]

jGuru: Remote Method Invocation (RMI)

Back to Top

Exercise

3. RMI Parameters

RMI Client-side Callbacks

In many architectures, a server may need to make a remote call to a client. Examples include progress
feedback, time tick notifications, warnings of problems, etc.

To accomplish this, a client must also act as an RMI server. There is nothing really special about this
as RMI works equally well between all computers. However, it may be impractical for a client to
extend java.rmi.server.UnicastRemoteObject. In these cases, a remote object may
prepare itself for remote use by calling the static method

UnicastRemoteObject.exportObject (<remote_object>)

Exercise

4. RMI Client Callbacks

Distributing and Installing RMI Software

RMI adds support for a Distributed Class model to the Java platform and extends Java technology's
reach to multiple JVMs. It should not be a surprise that installing an RMI system is more involved
than setting up a Java runtime on a single computer. In this section, you will learn about the issues
related to installing and distributing an RMI based system.

For the purposes of this section, it is assumed that the overall process of designing a DC system has
led you to the point where you must consider the allocation of processing to nodes. And you are
trying to determine how to install the system onto each node.

Back to Top

Distributing RMI Classes

To run an RMI application, the supporting class files must be placed in locations that can be found by
the server and the clients.

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (20 of 31) [2010-10-16 19:55:36]

http://java.sun.com/developer/onlineTraining/rmi/#top
http://java.sun.com/developer/onlineTraining/rmi/exercises/RMIParameters/index.html
http://java.sun.com/products/jdk/1.2/index.html
http://java.sun.com/developer/onlineTraining/rmi/exercises/RMICallback/index.html
http://java.sun.com/developer/onlineTraining/rmi/#top

jGuru: Remote Method Invocation (RMI)

For the server, the following classes must be available to its class loader:

● Remote service interface definitions
● Remote service implementations
● Skeletons for the implementation classes (JDK 1.1 based servers only)
● Stubs for the implementation classes
● All other server classes

For the client, the following classes must be available to its class loader:

● Remote service interface definitions
● Stubs for the remote service implementation classes
● Server classes for objects used by the client (such as return values)
● All other client classes

Once you know which files must be on the different nodes, it is a simple task to make sure they are
available to each JVM's class loader.

Automatic Distribution of Classes

The RMI designers extended the concept of class loading to include the loading of classes from FTP
servers and HTTP servers. This is a powerful extension as it means that classes can be deployed in
one, or only a few places, and all nodes in a RMI system will be able to get the proper class files to
operate.

RMI supports this remote class loading through the RMIClassLoader. If a client or server is
running an RMI system and it sees that it must load a class from a remote location, it calls on the
RMIClassLoader to do this work.

The way RMI loads classes is controlled by a number of properties. These properties can be set when
each JVM is run:

java [-D<PropertyName>=<PropertyValue>]+
<ClassFile>

The property java.rmi.server.codebase is used to specify a URL. This URL points to a
file:, ftp:, or http: location that supplies classes for objects that are sent from this JVM. If a
program running in a JVM sends an object to another JVM (as the return value from a method), that
other JVM needs to load the class file for that object. When RMI sends the object via serialization of
RMI embeds the URL specified by this parameter into the stream, alongside of the object.

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (21 of 31) [2010-10-16 19:55:36]

http://java.sun.com/products/jdk/1.2/index.html

jGuru: Remote Method Invocation (RMI)

Note: RMI does not send class files along with the serialized objects.

If the remote JVM needs to load a class file for an object, it looks for the embedded URL and
contacts the server at that location for the file.

When the property java.rmi.server.useCodebaseOnly is set to true, then the JVM will
load classes from either a location specified by the CLASSPATH environment variable or the URL
specified in this property.

By using different combinations of the available system properties, a number of different RMI system
configurations can be created.

Closed. All classes used by clients and the server must be located on the JVM and referenced by the
CLASSPATH environment variable. No dynamic class loading is supported.

Server based. A client applet is loaded from the server's CODEBASE along with all supporting
classes. This is similar to the way applets are loaded from the same HTTP server that supports the
applet's web page.

Client dynamic. The primary classes are loaded by referencing the CLASSPATH environment
variable of the JVM for the client. Supporting classes are loaded by the
java.rmi.server.RMIClassLoader from an HTTP or FTP server on the network at a
location specified by the server.

Server-dynamic. The primary classes are loaded by referencing the CLASSPATH environment
variable of the JVM for the server. Supporting classes are loaded by the
java.rmi.server.RMIClassLoader from an HTTP or FTP server on the network at a
location specified by the client.

Bootstrap client. In this configuration, all of the client code is loaded from an HTTP or FTP server
across the network. The only code residing on the client machine is a small bootstrap loader.

Bootstrap server. In this configuration, all of the server code is loaded from an HTTP or FTP server
located on the network. The only code residing on the server machine is a small bootstrap loader.

The exercise for this section involves creating a bootstrap client configuration. Please follow the
directions carefully as different files need to be placed and compiled within separate directories.

Back to Top

Exercise

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (22 of 31) [2010-10-16 19:55:36]

http://java.sun.com/products/jdk/1.2/index.html
http://java.sun.com/products/jdk/1.2/index.html
http://java.sun.com/developer/onlineTraining/rmi/#top

jGuru: Remote Method Invocation (RMI)

5. Bootstrap Example

Firewall Issues

Firewalls are inevitably encountered by any networked enterprise application that has to operate
beyond the sheltering confines of an Intranet. Typically, firewalls block all network traffic, with the
exception of those intended for certain "well-known" ports.

Since the RMI transport layer opens dynamic socket connections between the client and the server to
facilitate communication, the JRMP traffic is typically blocked by most firewall implementations.
But luckily, the RMI designers had anticipated this problem, and a solution is provided by the RMI
transport layer itself. To get across firewalls, RMI makes use of HTTP tunneling by encapsulating the
RMI calls within an HTTP POST request.

Now, examine how HTTP tunneling of RMI traffic works by taking a closer look at the possible
scenarios: the RMI client, the server, or both can be operating from behind a firewall. The following
diagram shows the scenario where an RMI client located behind a firewall communicates with an
external server.

In the above scenario, when the transport layer tries to establish a connection with the server, it is
blocked by the firewall. When this happens, the RMI transport layer automatically retries by
encapsulating the JRMP call data within an HTTP POST request. The HTTP POST header for the
call is in the form:

http://hostname:port

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (23 of 31) [2010-10-16 19:55:37]

http://java.sun.com/developer/onlineTraining/rmi/exercises/BootstrapExample/index.html

jGuru: Remote Method Invocation (RMI)

If a client is behind a firewall, it is important that you also set the system property
http.proxyHost appropriately. Since almost all firewalls recognize the HTTP protocol, the
specified proxy server should be able to forward the call directly to the port on which the remote
server is listening on the outside. Once the HTTP-encapsulated JRMP data is received at the server, it
is automatically decoded and dispatched by the RMI transport layer. The reply is then sent back to
client as HTTP-encapsulated data.

The following diagram shows the scenario when both the RMI client and server are behind firewalls,
or when the client proxy server can forward data only to the well-known HTTP port 80 at the server.

In this case, the RMI transport layer uses one additional level of indirection! This is because the client
can no longer send the HTTP-encapsulated JRMP calls to arbitrary ports as the server is also behind a
firewall. Instead, the RMI transport layer places JRMP call inside the HTTP packets and send those
packets to port 80 of the server. The HTTP POST header is now in the form

http://hostname:80/cgi-bin/java-rmi?forward=<port>

This causes the execution of the CGI script, java-rmi.cgi, which in turn invokes a local JVM,
unbundles the HTTP packet, and forwards the call to the server process on the designated port. RMI
JRMP-based replies from the server are sent back as HTTP REPLY packets to the originating client
port where RMI again unbundles the information and sends it to the appropriate RMI stub.

Of course, for this to work, the java-rmi.cgi script, which is included within the standard
JDK 1.1 or Java 2 platform distribution, must be preconfigured with the path of the Java interpreter
and located within the web server's cgi-bin directory. It is also equally important for the RMI
server to specify the host's fully-qualified domain name via a system property upon startup to avoid

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (24 of 31) [2010-10-16 19:55:37]

jGuru: Remote Method Invocation (RMI)

any DNS resolution problems, as:

java.rmi.server.hostname=host.domain.com

Note: Rather than making use of CGI script for the call forwarding, it is more efficient to use a servlet
implementation of the same. You should be able to obtain the servlet's source code from Sun's RMI
FAQ.

It should be noted that notwithstanding the built-in mechanism for overcoming firewalls, RMI suffers
a significant performance degradation imposed by HTTP tunneling. There are other disadvantages to
using HTTP tunneling too. For instance, your RMI application will no longer be able to multiplex
JRMP calls on a single connection, since it would now follow a discrete request/response protocol.
Additionally, using the java-rmi.cgi script exposes a fairly large security loophole on your
server machine, as now, the script can redirect any incoming request to any port, completely
bypassing your firewalling mechanism. Developers should also note that using HTTP tunneling
precludes RMI applications from using callbacks, which in itself could be a major design constraint.
Consequently, if a client detects a firewall, it can always disable the default HTTP tunneling feature
by setting the property:

java.rmi.server.disableHttp=true

Back to Top

Distributed Garbage Collection

One of the joys of programming for the Java platform is not worrying about memory allocation. The
JVM has an automatic garbage collector that will reclaim the memory from any object that has been
discarded by the running program.

One of the design objectives for RMI was seamless integration into the Java programming language,
which includes garbage collection. Designing an efficient single-machine garbage collector is hard;
designing a distributed garbage collector is very hard.

The RMI system provides a reference counting distributed garbage collection algorithm based on
Modula-3's Network Objects. This system works by having the server keep track of which clients
have requested access to remote objects running on the server. When a reference is made, the server
marks the object as "dirty" and when a client drops the reference, it is marked as being "clean."

The interface to the DGC (distributed garbage collector) is hidden in the stubs and skeletons layer.
However, a remote object can implement the java.rmi.server.Unreferenced interface and

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (25 of 31) [2010-10-16 19:55:37]

http://java.sun.com/products/jdk/1.2/docs/guide/rmi/faq.html#servlet
http://java.sun.com/products/jdk/1.2/docs/guide/rmi/faq.html#servlet
http://java.sun.com/developer/onlineTraining/rmi/#top
http://java.sun.com/products/jdk/1.2/index.html

jGuru: Remote Method Invocation (RMI)

get a notification via the unreferenced method when there are no longer any clients holding a
live reference.

In addition to the reference counting mechanism, a live client reference has a lease with a specified
time. If a client does not refresh the connection to the remote object before the lease term expires, the
reference is considered to be dead and the remote object may be garbage collected. The lease time is
controlled by the system property java.rmi.dgc.leaseValue. The value is in milliseconds
and defaults to 10 minutes.

Because of these garbage collection semantics, a client must be prepared to deal with remote objects
that have "disappeared."

In the following exercise, you will have the opportunity to experiment with the distributed garbage
collector.

Exercise

6. Distributed Garbage Collection

Back to Top

Serializing Remote Objects

When designing a system using RMI, there are times when you would like to have the flexibility to
control where a remote object runs. Today, when a remote object is brought to life on a particular
JVM, it will remain on that JVM. You cannot "send" the remote object to another machine for
execution at a new location. RMI makes it difficult to have the option of running a service locally or
remotely.

The very reason RMI makes it easy to build some distributed application can make it difficult to
move objects between JVMs. When you declare that an object implements the java.rmi.Remote
interface, RMI will prevent it from being serialized and sent between JVMs as a parameter. Instead of
sending the implementation class for a java.rmi.Remote interface, RMI substitutes the stub
class. Because this substitution occurs in the RMI internal code, one cannot intercept this operation.

There are two different ways to solve this problem. The first involves manually serializing the remote
object and sending it to the other JVM. To do this, there are two strategies. The first strategy is to
create an ObjectInputStream and ObjectOutputStream connection between the two
JVMs. With this, you can explicitly write the remote object to the stream. The second way is to
serialize the object into a byte array and send the byte array as the return value to an RMI method
call. Both of these techniques require that you code at a level below RMI and this can lead to extra

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (26 of 31) [2010-10-16 19:55:37]

http://java.sun.com/products/jdk/1.2/index.html#unreferenced()
http://java.sun.com/developer/onlineTraining/rmi/exercises/DistributedGarbageCollector/index.html
http://java.sun.com/developer/onlineTraining/rmi/#top
http://java.sun.com/products/jdk/1.2/docs/api/java/rmi/Remote.html
http://java.sun.com/products/jdk/1.2/docs/api/java/rmi/Remote.html

jGuru: Remote Method Invocation (RMI)

coding and maintenance complications.

In a second strategy, you can use a delegation pattern. In this pattern, you place the core functionality
into a class that:

● Does not implement java.rmi.Remote
● Does implement java.io.Serializable

Then you build a remote interface that declares remote access to the functionality. When you create
an implementation of the remote interface, instead of reimplementing the functionality, you allow the
remote implementation to defer, or delegate, to an instance of the local version.

Now look at the building blocks of this pattern. Note that this is a very simple example. A real-world
example would have a significant number of local fields and methods.

// Place functionality in a local object
public class LocalModel
implements java.io.Serializable
{
 public String getVersionNumber()
 {
 return "Version 1.0";
 }
}

Next, you declare an java.rmi.Remote interface that defines the same functionality:

interface RemoteModelRef
 extends java.rmi.Remote
{
 String getVersionNumber()
 throws java.rmi.RemoteException;
}

The implementation of the remote service accepts a reference to the LocalModel and delegates the
real work to that object:

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (27 of 31) [2010-10-16 19:55:37]

http://java.sun.com/products/jdk/1.2/docs/api/java/rmi/Remote.html
http://java.sun.com/products/jdk/1.2/docs/api/java/io/Serializable.html
http://java.sun.com/products/jdk/1.2/docs/api/java/rmi/Remote.html

jGuru: Remote Method Invocation (RMI)

public class RemoteModelImpl
 extends
 java.rmi.server.UnicastRemoteObject
 implements RemoteModelRef
 {
 LocalModel lm;

 public RemoteModelImpl (LocalModel lm)
 throws java.rmi.RemoteException
 {
 super();
 this.lm = lm;
 }

 // Delegate to the local
 //model implementation
 public String getVersionNumber()
 throws java.rmi.RemoteException
 {
 return lm.getVersionNumber();
 }
}

Finally, you define a remote service that provides access to clients. This is done with a java.r
mi.Remote interface and an implementation:

interface RemoteModelMgr extends java.rmi.Remote
{
 RemoteModelRef getRemoteModelRef()
 throws java.rmi.RemoteException;

 LocalModel getLocalModel()
 throws java.rmi.RemoteException;
}

public class RemoteModelMgrImpl
 extends
 java.rmi.server.UnicastRemoteObject
 implements RemoteModelMgr
 {
 LocalModel lm;
 RemoteModelImpl rmImpl;

 public RemoteModelMgrImpl()
 throws java.rmi.RemoteException
 {
 super();

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (28 of 31) [2010-10-16 19:55:37]

http://java.sun.com/products/jdk/1.2/docs/api/java/rmi/Remote.html
http://java.sun.com/products/jdk/1.2/docs/api/java/rmi/Remote.html

jGuru: Remote Method Invocation (RMI)

 }

 public RemoteModelRef getRemoteModelRef()
 throws java.rmi.RemoteException
 {
 // Lazy instantiation of delgatee
 if (null == lm)
 {
 lm = new LocalModel();
 }

 // Lazy instantiation of
 //Remote Interface Wrapper
 if (null == rmImpl)
 {
 rmImpl = new RemoteModelImpl (lm);
 }

 return ((RemoteModelRef) rmImpl);
 }

 public LocalModel getLocalModel()
 throws java.rmi.RemoteException
 {
 // Return a reference to the
 //same LocalModel
 // that exists as the delagetee
 //of the RMI remote
 // object wrapper

 // Lazy instantiation of delgatee
 if (null == lm)
 {
 lm = new LocalModel();
 }

 return lm;
 }
}

Back to Top

Exercises

7. Serializing Remote Objects: Server
8. Serializing Remote Objects: Client

Mobile Agent Architectures

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (29 of 31) [2010-10-16 19:55:37]

http://java.sun.com/developer/onlineTraining/rmi/#top
http://java.sun.com/developer/onlineTraining/rmi/exercises/LocalRemoteServer/index.html
http://java.sun.com/developer/onlineTraining/rmi/exercises/LocalRemoteClient/index.html

jGuru: Remote Method Invocation (RMI)

The solution to the mobile computing agent using RMI is, at best, a work-around. Other distributed
Java architectures have been designed to address this issue and others. These are collectively called
mobile agent architectures. Some examples are IBM's Aglets Architecture and ObjectSpace's
Voyager System. These systems are specifically designed to allow and support the movement of Java
objects between JVMs, carrying their data along with their execution instructions.

Alternate Implementations

This module has covered the RMI architecture and Sun's implementation. There are other
implementations available, including:

● NinjaRMI
A free implementation built at the University of California, Berkeley. Ninja supports the JDK
1.1 version of RMI, with extensions.

● BEA Weblogic Server
BEA Weblogic Server is a high performance, secure Application Server that supports RMI,
Microsoft COM, CORBA, and EJB (Enterprise JavaBeans), and other services.

● Voyager
ObjectSpace's Voyager product transparently supports RMI along with a proprietary DOM,
CORBA, EJB, Microsoft's DCOM, and transaction services.

Additional Resources

Books and Articles

● Design Patterns, by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (The
Gang of Four)

● Sun's RMI FAQ
● RMI over IIOP
● RMI-USERS Mailing List Archive
● Implementing Callbacks with Java RMI, by Govind Seshadri, Dr. Dobb's Journal, March 1998

Copyright 1996-2000 jGuru.com. All Rights Reserved.

Back to Top
About This Course
Exercises
Download

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (30 of 31) [2010-10-16 19:55:37]

http://www.alphaworks.ibm.com/formula/
http://www.objectspace.com/
http://www.objectspace.com/
http://www.cs.berkeley.edu/~mdw/proj/ninja/
http://www.beasys.com/products/index.html
http://www.objectspace.com/
http://hillside.net/patterns/DPBook/DPBook.html
http://java.sun.com/products/jdk/1.2/docs/guide/rmi/faq.html
http://www.ibm.com/java/jdk/rmi-iiop/
http://archives.java.sun.com/archives/rmi-users.html
http://www.ddj.com/ftp/1998/1998_03/jqa398.txt
http://www.jguru.com/
http://java.sun.com/developer/onlineTraining/rmi/#top
http://java.sun.com/developer/onlineTraining/rmi/index.html
http://java.sun.com/developer/onlineTraining/rmi/exercises.html
http://java.sun.com/developer/onlineTraining/Downloads/rmi.zip

jGuru: Remote Method Invocation (RMI)

1 As used on this web site, the terms "Java virtual machine" or "JVM" mean a virtual machine for the
Java platform.

copyright © Sun Microsystems, Inc

file:///E|/LECTURES%20NEW/XX-RMI/jGuru/Remote%20Method%20Invocation%20(RMI).htm (31 of 31) [2010-10-16 19:55:37]

	Local Disk
	jGuru: Remote Method Invocation (RMI)

