Remote Method Invocation (RMI)
(A)

(Wylacznie do uzytku lokalnego w ramach PZR 420 i PZR 380)

Wersja 1.2/2006

Bibliografia:

E.R. Harold, ,,JAVA. Programowanie Sieciowe”, RM

J. Bielecki, ,,JAVA 3 RMI, Podstawy Programowania Rozproszonego”, Helion
C.S. Horstman, G. Cornell, “Core JAVA 2. Techniki Zaawansowane”, Helion
R.Orfali & D. Harkey ,,Clien/Server Programming with JAVA & CORBA” J-W
http://java.sun.com/

http://archives.java.sun.com/archives/rmi-users.html/

SAINARF I S

Obiekty i Komponenty

Ery technologiczne w informatyce a ,,teoria fal”

(R.Orfali & D. Harkey ,, Clien/Server Programming with JAVA & CORBA” J-W.)

Ethernet Era .
Client/Server

Intergalactic Era
Client/Server

.

First Wave

Second Wave

. A e)

Third Wave

1962

1866

Figure 2-4. The Waves of Clieat/Server.

Table 2-2. Web Client/Server Versus Traditional Client/Server,

Application Characteristic

Intergalactic Era Client/Server

Ethernei Erg Client/Server

Humber of elfents per application

Millions

Fewer than 100

Humber of servers per applicstion

104,000+

I or 2

Gnagraphy

CGlohal

Campus-bhased

Server-ta-server interactions

Tos

Middloware

Client/ server srehiteeture

ORBs+0TMs on top of Internet

Mo

SQL and stored procedures

A-tier (or n-tier)

Trangactional updates

A-tier

Pervasive Very infrequent
Multimedis eomtend mIIigh Livar
Mobile agents R Yios M - -
Cliant frant-znds .[;'_}.(..)UIE.. ‘;ﬁr’ean[::e. and .‘it'li.]'lj:l.'"]b.i!_' Gl

places

Timeframe

[O08-2000

1985 till present

....od nazwy obiektu do interfejsu

Gm”F’ Db act .
AT f_' M.:rl;had 1 /‘l Y il
I: u-j (L Method_2 | \‘_,5} Interface 2
a) Object b) Object and Methods ¢) OLE Object:

... poziomy zarzadzania komponentami

:-—"''__ e,
d_,a-f"f .-—~—_'__—_'__——--______h i a
. o,
A b T HH
sEgtitatit .::-::_'q_h“‘“*x
-'"'.::- . --.-.."\-. R |_ e #
e el A o
Cornponent . %‘;ﬁ:'c:”’ﬁl Application-Level
Pue” - ramemorks E‘Uﬁ""
- ‘_'___—'-"--'-F-
o
Interoperation i Collabaratmn /
Interoperable Supersmart PBusiness UbJBG’D

Componente Components Suites

...... wiasciwosci funkcjonalne rozproszonych komponentow

Ay Plug-and-Flay

¢ L+;j-l~r:__f:::iJ ; Ji,
1 [) [y R Lf.'_'-.

"""'"._".." — e __,-'i_l '_h.\v"ll—l
B} Interoperabllicy
- : -
P L A A e D, o |‘j r,_l
£ - L * I *‘ . -
1 A -+ g
DRl — S s
L) Fortakility .
Object
Pl S
r__ TR TSP |
OS2 _::l- MALC ,l Uklx | |
iy Y e i
L} Coexistence
™
| |
e f ST AT ~ Lega
VP L ST |pepllatior
= f——l___." o
E) Self-managing Entities =
|
S (il
- o r_| 4
~ ._']l > = — —h-_l__l_l {l
"""" - S F)

..... podstawowe wtasnosci komponentow:

. It is a marketable entity. A component is a self-contained, shrink-wrapped,
binary piece of software that you can typically purchase in the open market.

. It is not a complete application. A component can be combined with other
components to form a complete application. It is designed to perform a limited set of
tasks within an application domain. Components can be fine-grained objects-for
example, a C+ + size object;'Tledium-grained objects-for example, a GUI control; or
coarse-grained objects-for example, an applet.

. It can be used in unpredictable combinations. Like real-world objects, a
component can be used in ways'that were totally unanticipated by the original
developer. Typically, components can be combined with other components of the same
family-called suites-using plug-and-play.

. It.has a well-specified interface. Like a classical object, a component can
only be manipulated through its interface. This is how the component exposes its
function to the outside world. A CORBNOpenDoc component also provides

. It is an interoperable object. A component can be invoked as an object across
address spaces, networks, languages, operating systems, and tools. It is a
system-independent software entity.3

. It is an extended object. Components are bona fide objects in the sense that they
support encapsulation, inheritance, and polymorphism. However, components must
also provide all the features associated with a shrink-wrapped standalone object. These
features will be discussed in the next section.

In summary, a component is a reusable, self-contained piece of software that is
independent of any application.

!,' The Component Declaration of Independence |

| Wa, the componsnis, declare oar freadom from the tyranny of

l Lan]gu.agaﬁ: -Dgarufin Systems - Vendore -ﬂnm[plfurs

Too - Address Spaces - Networks - App i¢91iung|

g s RGOS
7 And | 52 '

| power to 1 |

unmpnnan’rs' :
') _ rﬂnmpnnan’r l{!

@ ri ! 'E'qht D".I e Fraedunl] IlLJ -liberation] / _ ';_"’ E;ﬁ

| Fre i v o

3\ L ?-Ej_ = —r'H | ——==] ~

By el Tule] X
ffj;t;t 'I:F.'_.i\.f\-t_'{_? 1) i . IL
o SRS,)

So, What Is a Supercomponent?

If the components come with a bad reputation, no one will use them. Therefore components must be of an
extraordinary quality. They need to be well tested, efficient, and well documented... The component should inuite
reuse.
- loar Jacobson, Author Object-Oriented Software Enineerin9 (Addison-Wesley,
1993)

Supercomponents are components with added smarts. The smarts are needed for creating autonomous,
loosely-coupled, shrink-wrapped objects that can roam across machines and live on networks.
Consequently, components need to provide the type of facilities that you associate with independent

networked entitiesincluding:

. Security — a component must protect itself and its resources from outside threats. It must
authenticate itself to its clients, and vice versa. It must provide access controls. And it

must keep audit trails of its use.

. Licensing - a component must be able to enforce licensing policies including per-usage
licensing and metering. It is important to reward component vendors for the use of their

components.

. Versioning - a component must provide some form of version control; it must
make sure its clients are using the right version.

. Life cycle management - a component must manage its creation, destruction, and archival. It
must also be able to clone itself, externalize its contents, and move from one location to
the next.

. Supportfor open tool palettes - a component must allow itself to be imported within a
standard tool palette. An example is a tool palette that supports OLE OCXs or OpenDoc
parts. A component that abides by an open palette's rules can be assembled with other
components using drag-and-drop and other visual assembly techniques.

. Event notification - a component must be able to notify interested parties when something
of interest happens to it.

. Configuration and property managemen - a component must provide an interface to let you
configure its properties and scripts.

. Scripting - a component must permit its interface to be controlled via scripting languages.
This means the interface must be self-describing and support late binding.

. Metadata and introspection - a component must provide, on request, information about
itself. This includes a description of its interfaces, attributes, and the suites it supports.

. Transaction control and locking - a component must transactionally protect its resources
and cooperate with other components to provide all or nothing integrity. In addition, it
must provide locks to serialize access to shared resources.

. Persistence - a component must be able to save its state in a persistent store
and later restore it.

. Relationships - a component must be able to form dynamic or permanent associations with
other components. For example, a component can contain other components.

. Ease of use - a component must provide a limited number of operations to encourage use
and reuse. In other words, the level of abstraction must be as high as possible to make the
component inviting to use.

. Self-testing - a component must be self-testing. You should be able to run
component-provided diagnostics to do problem determination.

. Semantic messaging - a component must be able to understand the vocabu
lary of the particular suites and domain-specific extensions it supports.

. Self-installing - a component must be able to install itself and automatically register its
factory with the operating system or component registry. The component must also be
able to remove itself from disk when asked to do so.

.....dodatkowe pojecia:

= -
L L e e Y N
—_— - F T LT ™

[]

L e . Fags ¥

- 5 g I—I -.-‘I ._'_‘-__'
a) Compaonent 2} Objsct Framsworl ¢} Object Request

Cartosn Eroker {OFRE)

... wspotpraca pomigdzy obiektami i zastosowanie diagramow:

Ob|ect 1 CObject 2
||'r{-'-d__-‘. flf_ -
| a |
— . Create
@ Moirodl -
— .
@ Mstagd 2
&) rethod B
| [

... przyktadowa architektura wspotdziatania rozproszonych komponentow — CORBA

Client . |Implementation
terface | ; | Gtatic 'd_h'amis‘
g RB
Eﬂpﬂaumrﬂ namic || Cller i 0 Skeletons|| Skeleton | Object
| P At 5|1:[E|lﬁrﬁ terface vocation| Adapter
g R A,
(Object Request Broker Core >

Figure 4-2. The Structure of : CORBA 2.0 ORB.

RMI

Klasy i metody systemu RMI dla JDK 1.1

Javs la ha
< pject
O Class
o
o
L

Femote
Interface

o

o L
iplemente |
I

(O RemoteException
O getMessags

E&mmacﬁptioﬁ
Class

—

P

. 3

A EEEE

O Bemotedbject FEEFHDESGE‘JBGT;
O hashCode Class
) eauals g:_fl
) toString :\@
F R]
L
O RemoteStul FemoteStub O RemoteServer | RemoteServer
O setRef Class O getllientHost Class ‘
. O getlog Tl :
! ':ﬁ*'*__ > £ setlog ['f_‘ﬁ'""'_ = !
* % 5
I E—— !
! | C UnisastRemoteObiest | UnicastEemotelbject .
:uggg C} ﬂxpﬂl"t-l:jb‘iﬁﬁt- Clﬂﬁ‘ﬁ |
rmic-corailed [O elone o |
) latyup (1 |
LAVA T i p e I
. 1 1
CAVATTT BEFVET : ? --------- — :
Tour | Tour
client: clags server class

. The RemoteException class is the superclass of all exceptions that can be thrown by the
RMI runtime. Each method you declare in a remote interface must specify
RemoteException in its throws clause. A remote method throws a RemoteException
when its invocation fails-for example, when a network fails or if a server cannot be found.
You construct a RemoteException object by invoking the class constructor. You invoke
getMessage to obtain the cause of a remote exception.

. The Remote interface is used to identify all remote objects. Every remote RMI object must
implement this interface. Of course, the interface only serves to flag remote objects; it
does not define any methods.

. The RemoteObject class provides a remote version of the Java root Object class. It
implements remote versions of the methods hashCode, equals, and toString. You should
note that the default implementation for Object. get Class is appropriate for all Java
objects, local or remote; the method needs no special implementation for remote objects.
When used on a remote object, the getClass method reports the exact type of the
generated stub object. The Object. wait and Object. notify methods are used for thread
waiting and notification. In remote situations, these methods operate on the client's local
reference to the remote object, not on the actual object at the remote site.

. The RemoteServer class defines methods to create server objects and export them (Le.,
make them available remotely). This class is also the common superclass to all server
implementations. The getClientHost method returns the host address of the invoking
client. The getLog method returns a stream for the RMI call log. The setLog method logs
RMI calls to an output stream.

. The UnicastRemoteObject class implements a remote server object with the following
characteristics: 1) all references to the remote object are only valid during the life of the
process that creates the remote object; 2) the remote protocol requires a TCP connection-
based transport; and 3) the client and server communicate parameters, invocations, and
results using a stream protocol. The exportObject method returns a stub that serves as a
local proxy for the remote object. Clients use this method to dynamically download stubs.
The clone method returns a clone of the remote object that is distinct from the original.

Your server classes must either directly or indirectly extend the UnicastRemoteObject class
and inherit its remote behavior. You can implement any number of remote interfaces in your
server class. Methods that do not appear in a remote interface are only available locally.

. The RemoteStub class is the common superclass to all client stubs. It represents a remote
stub for a specified implementation class. Either the stub object or the object itself can be
passed as arguments in calls or returned to clients. During marshaling, if a reference to a
remote object is passed, a lookup is performed to find the matching remote stub.

Klasy i metody prostego serwisu katalogowego dla RMI JDK1.1

avalang T |
i O Orject i
: O] Class |
? o g |

O [= I
1 O i. :
e L)
b) :_,_____:"""""""""_"-: T e
1 1©] Remots O getRegistry |LocateReqistry || |© lookup | Naming ||
O] |”t51'f§'3~5 O createRegistry Class O bind Clase |
el /T N O unbind_| |
O] i) rebing . !
O O list j
- 3 : '
G lockug Eegistry :'
' |© Find Interface ;
'O unbing n :
: O reking Jdava rmi i
O list: java.rmiregistry i

“Kompilacja” dla Java Development Kit 1.1

Define your
remote interface

Implement the
interface

Fun the
stub cumpilﬂr

B .4
lmplement |_____ Client Stubk
lient s (.class)
(java) '
< javac)
__T.Elaﬁﬁj
i
—>T Start client
i —~—— -

Client

([Java)

Server class
(.clags
Server akeleton
(clags)
Etar*t RMI ﬁe_gfétry
(,?%_ I
tart server obj jecis)
I
@ Register
r"f;matr: objects
K _»
Server

AN
<

4

N1/

Sany miEe im m '™

Ijon Tichy
Rectangle

Ijon Tichy
Rectangle

Ijon Tichy
Oval

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Oval

Przyklad — Aplikacja “RMI Count”

| // CountRmi Interface >

public interface CountRMI extends java.rmi.Remote

{

int sum() throws java.rmi.RemoteException;
void sum(int val) throws java.rmi.RemoteException;
public int increment{() throws java.rmi.RemoteException;

\

(=

// CountRMIClient.java RMY CounFAEEEEEE::>

import java.rmi.*;
import java.rmi.registry.*;
import java.rmi.server.*;

public class CountRMIClient
{ public static void main(Staing args|[])
{ // Create and install the|\ security manager
System.setSecurityManager(new RMISecurityManager());

try
{ CountRMI myCount = (CountRMI)Naming.lookup ("rmi://"
+ args[0] + "/"™ + "my Cou%gRMI");

// Set Sum to initial value of 0
System.out.println ("Setting Sum to 0");

/////%7myCount.sum(O);

// Calculate Start time
long startTime = System.currentTimeMillis() ;

// Increment 1000 times
System.out.println ("Incrementing");
for (int 1 =0 ; 1 < 1000 ; 1i++)

{ myCount.increment () ;

// Calculate stop time; print out statistics
long stopTime = System.currentTimeMillis();
System.out.println ("Avg Ping = "
+ ((stopTime - startTime)/1000f)
+ " msecs");
System.out.println("Sum = " + myCount.sum());
} catch (Exception e)
{ System.err.println("System Exception" + e);
}
System.exit (0) ;

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Rectangle

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Oval

Ijon Tichy
Oval

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

// CountRMIImpl.java, CountRMI implemEEEEEigE;::>

import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;

public class CountRMIImpl extends UnicastRemoteObjeé%(//
implements CountRMI
{

private int sum;

public CountRMIImpl (String name) throws RemoteException
{

super () ;

try
{

Naming.rebind (name, this);

sum = 0;
} catch (Exception e)
{ System.out.println("Exception: " + e.getMessage());

e.printStackTrace () ;

public int sum() throws RemoteException
{ return sum;

}

public wvoid sum(int val) throws RemoteException
{ sum = val;

}

public int increment () throws RemoteException
{ sum++;
return sum;

Ijon Tichy
Oval

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Rectangle

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Arrow

// CountRMIServer.jazg_____;:>

import java.rmi.*;
import java.rmi.server.*;

public class CountRMIServer

{

public static void main(String argsl([])

{

// Create and install the security manager
System.setSecurityManager (new RMISecurityManager());

try

{
// Create CountRMIImpl
CountRMITImpl myCount = new CountRMIImpl ("my CountRMI");
System.out.println ("CountRMI Server ready.");

} catch (Exception e)

{ System.out.println ("Exception: " + e.getMessage());
e.printStackTrace () ;

}

rem CountRMI make

javac -d \CorbaJavaBook.2e\classes CountRMI.java

javac -d \CorbaJavaBook.2e\classes CountRMIImpl.java
javac -d \CorbaJavaBook.2e\classes CountRMIClient.java
javac -d \CorbaJavaBook.2e\classes CountRMIServer.java
rmic -d \CorbaJavaBook.2e\classes CountRMIImpl

Ijon Tichy
Oval

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Arrow

Ijon Tichy
Arrow

(111,

\

Clignt

TRl By

I_@' ?:I.'F":ﬁﬁl:ljritf,'h‘f- ar_i.a;jﬂr;} !
! 1

" setSecurityManager i

& lockup

rapeat
gl
Times

& sum()

& start timer

._9_ harement

© stop timer

¢ \\ I
N ingrement

rebing E-

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Rectangle

Ijon Tichy
Rectangle

Ijon Tichy
Rectangle

Ijon Tichy
Oval

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Oval

Ijon Tichy
Oval

Ijon Tichy
Oval

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Typewriter
 I.

Ijon Tichy
Typewriter
 II.

Ijon Tichy
Typewriter
 III.

Ijon Tichy
Oval

Ijon Tichy
Oval

Ijon Tichy
Oval

