

Remote Method Invocation (RMI)

(A)

(Wyłącznie do użytku lokalnego w ramach PZR 420 i PZR 380)

Wersja 1.2/2006

Bibliografia:

1. E.R. Harold, „JAVA. Programowanie Sieciowe”, RM
2. J. Bielecki, „JAVA 3 RMI, Podstawy Programowania Rozproszonego”, Helion
3. C.S. Horstman, G. Cornell, “Core JAVA 2. Techniki Zaawansowane”, Helion
4. R.Orfali & D. Harkey „Clien/Server Programming with JAVA & CORBA” J-W
5. http://java.sun.com/
6. http://archives.java.sun.com/archives/rmi-users.html/

Obiekty i Komponenty

Ery technologiczne w informatyce a „teoria fal”

(R.Orfali & D. Harkey „Clien/Server Programming with JAVA & CORBA” J-W.)

 od nazwy obiektu do interfejsu

.... poziomy zarządzania komponentami

...... właściwości funkcjonalne rozproszonych komponentów

….. podstawowe własności komponentów:

. It is a marketable entity. A component is a self-contained, shrink-wrapped,
 binary piece of software that you can typically purchase in the open market.

. It is not a complete application. A component can be combined with other
components to form a complete application. It is designed to perform a limited set of
tasks within an application domain. Components can be fine-grained objects-for
example, a C+ + size object;'lTledium-grained objects-for example, a GUI control; or
coarse-grained objects-for example, an applet.

. It can be used in unpredictable combinations. Like real-world objects, a
component can be used in ways'that were totally unanticipated by the original
developer. Typically, components can be combined with other components of the same
family-called suites-using plug-and-play.

. It has a well-specified interface. Like a classical object, a component can
only be manipulated through its interface. This is how the component exposes its
function to the outside world. A CORBNOpenDoc component also provides

. It is a marketable entity. A component is a self-contained, shrink-wrapped,
 binary piece of software that you can typically purchase in the open market.

. It is not a complete application. A component can be combined with other
components to form a complete application. It is designed to perform a limited set of
tasks within an application domain. Components can be fine-grained objects-for
example, a C+ + size object;'lTledium-grained objects-for example, a GUI control; or
coarse-grained objects-for example, an applet.

. It can be used in unpredictable combinations. Like real-world objects, a
component can be used in ways'that were totally unanticipated by the original
developer. Typically, components can be combined with other components of the same
family-called suites-using plug-and-play.

.

. It is an interoperable object. A component can be invoked as an object across
address spaces, networks, languages, operating systems, and tools. It is a
system-independent software entity.3

. It is an extended object. Components are bona fide objects in the sense that they
support encapsulation, inheritance, and polymorphism. However, components must
also provide all the features associated with a shrink-wrapped standalone object. These
features will be discussed in the next section.

In summary, a component is a reusable, self-contained piece of software that is
independent of any application.

So, What Is a Supercomponent?

If the components come with a bad reputation, no one will use them. Therefore components must be of an
extraordinary quality. They need to be well tested, efficient, and well documented... The component should inuite
reuse.

- loar Jacobson, Author Object-Oriented Software En9ineerin9 (Addison-Wesley,
1993)

Supercomponents are components with added smarts. The smarts are needed for creating autonomous,
loosely-coupled, shrink-wrapped objects that can roam across machines and live on networks.
Consequently, components need to provide the type of facilities that you associate with independent
networked entitiesincluding:

. Security – a component must protect itself and its resources from outside threats. It must

authenticate itself to its clients, and vice versa. It must provide access controls. And it
must keep audit trails of its use.

. Licensing - a component must be able to enforce licensing policies including per-usage

licensing and metering. It is important to reward component vendors for the use of their
components.

. Versioning - a component must provide some form of version control; it must
 make sure its clients are using the right version.

. Life cycle management - a component must manage its creation, destruction, and archival. It
must also be able to clone itself, externalize its contents, and move from one location to
the next.

. Supportfor open tool palettes - a component must allow itself to be imported within a

standard tool palette. An example is a tool palette that supports OLE OCXs or OpenDoc
parts. A component that abides by an open palette's rules can be assembled with other
components using drag-and-drop and other visual assembly techniques.

. Event notification - a component must be able to notify interested parties when something
 of interest happens to it.

. Configuration and property managemen - a component must provide an interface to let you
 configure its properties and scripts.

 . Scripting - a component must permit its interface to be controlled via scripting languages.

This means the interface must be self-describing and support late binding.

. Metadata and introspection - a component must provide, on request, information about

itself. This includes a description of its interfaces, attributes, and the suites it supports.

. Transaction control and locking - a component must transactionally protect its resources

and cooperate with other components to provide all or nothing integrity. In addition, it
must provide locks to serialize access to shared resources.

. Persistence - a component must be able to save its state in a persistent store
 and later restore it.

. Relationships - a component must be able to form dynamic or permanent associations with

other components. For example, a component can contain other components.

. Ease of use - a component must provide a limited number of operations to encourage use

and reuse. In other words, the level of abstraction must be as high as possible to make the
component inviting to use.

. Self-testing - a component must be self-testing. You should be able to run
 component-provided diagnostics to do problem determination.

. Semantic messaging - a component must be able to understand the vocabu
 lary of the particular suites and domain-specific extensions it supports.

. Self-installing - a component must be able to install itself and automatically register its

factory with the operating system or component registry. The component must also be
able to remove itself from disk when asked to do so.

…..dodatkowe pojęcia:

….. współpraca pomiędzy obiektami i zastosowanie diagramów:

….. przykładowa architektura współdziałania rozproszonych komponentów – CORBA

RMI

Klasy i metody systemu RMI dla JDK 1.1

. The RemoteException class is the superclass of all exceptions that can be thrown by the
RMI runtime. Each method you declare in a remote interface must specify
RemoteException in its throws clause. A remote method throws a RemoteException
when its invocation fails-for example, when a network fails or if a server cannot be found.
You construct a RemoteException object by invoking the class constructor. You invoke
getMessage to obtain the cause of a remote exception.

. The Remote interface is used to identify all remote objects. Every remote RMI object must

implement this interface. Of course, the interface only serves to flag remote objects; it
does not define any methods.

. The RemoteObject class provides a remote version of the Java root Object class. It
implements remote versions of the methods hashCode, equals, and toString. You should
note that the default implementation for Object. get Class is appropriate for all Java
objects, local or remote; the method needs no special implementation for remote objects.
When used on a remote object, the getClass method reports the exact type of the
generated stub object. The Object. wait and Object. notify methods are used for thread
waiting and notification. In remote situations, these methods operate on the client's local
reference to the remote object, not on the actual object at the remote site.

. The RemoteServer class defines methods to create server objects and export them (Le.,

make them available remotely). This class is also the common superclass to all server
implementations. The getClientHost method returns the host address of the invoking
client. The getLog method returns a stream for the RMI call log. The setLog method logs
RMI calls to an output stream.

. The UnicastRemoteObject class implements a remote server object with the following
characteristics: 1) all references to the remote object are only valid during the life of the
process that creates the remote object; 2) the remote protocol requires a TCP connection-
based transport; and 3) the client and server communicate parameters, invocations, and
results using a stream protocoL The exportObject method returns a stub that serves as a
local proxy for the remote object. Clients use this method to dynamically download stubs.
The clone method returns a clone of the remote object that is distinct from the original.

Your server classes must either directly or indirectly extend the UnicastRemoteObject class
and inherit its remote behavior. You can implement any number of remote interfaces in your
server class. Methods that do not appear in a remote interface are only available locally.

. The RemoteStub class is the common superclass to all client stubs. It represents a remote

stub for a specified implementation class. Either the stub object or the object itself can be
passed as arguments in calls or returned to clients. During marshaling, if a reference to a
remote object is passed, a lookup is performed to find the matching remote stub.

Klasy i metody prostego serwisu katalogowego dla RMI JDK1.1

“Kompilacja” dla Java Development Kit 1.1

Ijon Tichy
Rectangle

Ijon Tichy
Rectangle

Ijon Tichy
Oval

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Oval

Przykład – Aplikacja “RMI Count”

// CountRmi Interface

public interface CountRMI extends java.rmi.Remote
{
 int sum() throws java.rmi.RemoteException;
 void sum(int _val) throws java.rmi.RemoteException;
 public int increment() throws java.rmi.RemoteException;
}

// CountRMIClient.java RMI Count client

import java.rmi.*;
import java.rmi.registry.*;
import java.rmi.server.*;

public class CountRMIClient
{ public static void main(String args[])
 { // Create and install the security manager
 System.setSecurityManager(new RMISecurityManager());

 try
 { CountRMI myCount = (CountRMI)Naming.lookup("rmi://"
 + args[0] + "/" + "my CountRMI");

 // Set Sum to initial value of 0
 System.out.println("Setting Sum to 0");
 myCount.sum(0);

 // Calculate Start time
 long startTime = System.currentTimeMillis();

 // Increment 1000 times
 System.out.println("Incrementing");
 for (int i = 0 ; i < 1000 ; i++)
 { myCount.increment();
 }

 // Calculate stop time; print out statistics
 long stopTime = System.currentTimeMillis();
 System.out.println("Avg Ping = "
 + ((stopTime - startTime)/1000f)
 + " msecs");
 System.out.println("Sum = " + myCount.sum());
 } catch(Exception e)
 { System.err.println("System Exception" + e);
 }
 System.exit(0);
 }
}

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Rectangle

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Oval

Ijon Tichy
Oval

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

// CountRMIImpl.java, CountRMI implementation

import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;

public class CountRMIImpl extends UnicastRemoteObject
 implements CountRMI
{
 private int sum;

 public CountRMIImpl(String name) throws RemoteException
 {
 super();
 try
 {
 Naming.rebind(name, this);
 sum = 0;
 } catch (Exception e)
 { System.out.println("Exception: " + e.getMessage());
 e.printStackTrace();
 }
 }

 public int sum() throws RemoteException
 { return sum;
 }

 public void sum(int val) throws RemoteException
 { sum = val;
 }

 public int increment() throws RemoteException
 { sum++;
 return sum;
 }
}

Ijon Tichy
Oval

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Rectangle

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Arrow

// CountRMIServer.java

import java.rmi.*;
import java.rmi.server.*;

public class CountRMIServer
{

 public static void main(String args[])
 {

 // Create and install the security manager
 System.setSecurityManager(new RMISecurityManager());

 try
 {
 // Create CountRMIImpl
 CountRMIImpl myCount = new CountRMIImpl("my CountRMI");
 System.out.println("CountRMI Server ready.");
 } catch (Exception e)
 { System.out.println("Exception: " + e.getMessage());
 e.printStackTrace();
 }
 }
}

rem CountRMI make

javac -d \CorbaJavaBook.2e\classes CountRMI.java
javac -d \CorbaJavaBook.2e\classes CountRMIImpl.java
javac -d \CorbaJavaBook.2e\classes CountRMIClient.java
javac -d \CorbaJavaBook.2e\classes CountRMIServer.java
rmic -d \CorbaJavaBook.2e\classes CountRMIImpl

Ijon Tichy
Oval

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Scenariusz:

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Rectangle

Ijon Tichy
Rectangle

Ijon Tichy
Rectangle

Ijon Tichy
Oval

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Oval

Ijon Tichy
Oval

Ijon Tichy
Oval

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Typewriter
 I.

Ijon Tichy
Typewriter
 II.

Ijon Tichy
Typewriter
 III.

Ijon Tichy
Oval

Ijon Tichy
Oval

Ijon Tichy
Oval

