

Java theory and practice: Decorating with dynamic
proxies
Dynamic proxies are a convenient tool for building Decorators and Adapters

Level: Intermediate

Brian Goetz (brian@quiotix.com), Principal Consultant, Quiotix

30 Aug 2005

The dynamic proxy facility, part of the java.lang.reflect package and added to the JDK in
version 1.3, allows programs to create proxy objects, which can implement one or more known
interfaces and dispatch calls to interface methods programmatically using reflection instead of
using the built-in virtual method dispatch. This process allows implementations to "intercept"
method calls and reroute them or add functionality dynamically. This month, Brian Goetz
explores several applications for dynamic proxies. Share your thoughts on this article with the
author and other readers in the accompanying discussion forum. (You can also click Discuss at
the top or bottom of the article to access the forum.)

Dynamic proxies provide an alternate, dynamic mechanism for implementing many common design patterns,
including the Facade, Bridge, Interceptor, Decorator, Proxy (including remote and virtual proxies), and
Adapter patterns. While all of these patterns can be easily implemented using ordinary classes instead of
dynamic proxies, in many cases the dynamic proxy approach is more convenient and compact and can
eliminate a lot of handwritten or generated classes.

The Proxy pattern

The Proxy pattern involves the creation of a "stub" or "surrogate" object, whose purpose is to accept requests
and forward them to another object that actually does the work. The Proxy pattern is used by Remote Method
Invocation (RMI) to make an object executing in another JVM appear like a local object; by Enterprise
JavaBeans (EJB) to add remote invocation, security, and transaction demarcation; and by JAX-RPC Web
services to make remote services appear as local objects. In each case, the behavior of a potentially remote
object is defined by an interface, which by its nature admits multiple implementations. The caller cannot (for
the most part) tell that they only hold a reference to a stub and not the real object because they both implement
the same interface; the stub takes care of the work of finding the real object, marshalling the arguments,
sending them to the real object, unmarshalling the return value, and returning it to the caller. Proxies can be
used to provide remoting (as in RMI, EJB, and JAX-RPC), wrap objects with security policies (EJB), provide
lazy loading for expensive objects (EJB Entity Beans), or add instrumentation such as logging.

In JDKs prior to 5.0, RMI stubs (and their counterpart, skeletons) were classes generated at compile time by
the RMI compiler (rmic), which is part of the JDK tool set. For each remote interface, a stub (proxy) class is
generated, which impersonates the remote object, and a skeleton object is also generated, which does the
opposite job of the stub in the remote JVM -- it unmarshals the arguments and invokes the real object.
Similarly, the JAX-RPC tools for Web services generate proxy classes for remote Web services that make
them appear like local objects.

Whether the generated stub classes are generated as source code or bytecode, code generation still adds extra
steps to the compilation process and introduces the potential for confusion because of a proliferation of
similarly named classes. On the other hand, the dynamic proxy mechanism allows for the creation of a proxy
object at run time without generating stub classes at compile time. In JDK 5.0 and later, the RMI facility uses
dynamic proxies instead of generated stubs, with the result being that RMI became easier to use. Many J2EE
containers also use dynamic proxies to implement EJBs. EJB technology relies heavily on the use of

More dW content related to: RMI dynamic reflection

Page 1 of 8Java theory and practice: Decorating with dynamic proxies

2006-03-05http://www-128.ibm.com/developerworks/java/library/j-jtp08305.html

interception to implement security and transaction demarcation; dynamic proxies simplify the implementation
of interception by providing a central control flow path for all methods invoked on an interface.

The dynamic proxy mechanism

At the heart of the dynamic proxy mechanism is the InvocationHandler interface, shown in Listing 1. The
job of an invocation handler is to actually perform the requested method invocation on behalf of a dynamic
proxy. The invocation handler is passed a Method object (from the java.lang.reflect package) and the
list of arguments to be passed to the method; in the simplest case, it could simply call the reflective method
Method.invoke() and return the result.

Listing 1. InvocationHandler interface

Every proxy has an associated invocation handler that is called whenever one of the proxy's methods is called.
In keeping with the general design principle that interfaces are for defining types and classes are for defining
implementations, proxy objects can implement one or more interfaces, but not classes. Because proxy classes
do not have accessible names, they cannot have constructors, so they must instead be created by factories.
Listing 2 shows the simplest possible implementation of a dynamic proxy that implements the Set interface,
and dispatches all Set methods (as well as all Object methods) to the encapsulated Set instance.

Listing 2. Simple dynamic proxy that wraps a Set

The SetProxyFactory class contains one static factory method, getSetProxy(), which returns a dynamic
proxy implementing Set. The proxy object really does implement Set -- the caller cannot tell (except by
reflection) that the object returned is a dynamic proxy. The proxy returned by SetProxyFactory doesn't do
anything other than dispatch the method to the Set instance passed into the factory method. While reflection
code is often hard to read, there's so little going on here that it's not hard to follow to control flow -- whenever
a method gets invoked on the Set proxy, it gets dispatched to the invocation handler, which simply
reflectively invokes the desired method on the underlying wrapped object. Of course, a proxy that did
absolutely nothing would be silly -- or would it?

Do-nothing adapters

There actually is a good use for a do-nothing wrapper such as SetProxyFactory -- it can be used to safely

public interface InvocationHandler {
 Object invoke(Object proxy, Method method, Object[] args)
 throws Throwable;
}

public class SetProxyFactory {

 public static Set getSetProxy(final Set s) {
 return (Set) Proxy.newProxyInstance
 (s.getClass().getClassLoader(),
 new Class[] { Set.class },
 new InvocationHandler() {
 public Object invoke(Object proxy, Method method,
 Object[] args) throws Throwable {
 return method.invoke(s, args);
 }
 });
 }
}

Page 2 of 8Java theory and practice: Decorating with dynamic proxies

2006-03-05http://www-128.ibm.com/developerworks/java/library/j-jtp08305.html

narrow an object reference to a specific interface (or set of interfaces) in such a way that the caller cannot
upcast the reference, making it safer to pass object references to untrusted code such as plug-ins or callbacks.
Listing 3 contains a set of class definitions that implement a typical callback scenario; you'll see how dynamic
proxies can more conveniently replace an Adapter pattern that is commonly implemented by hand (or by code
generation wizards provided by IDEs).

Listing 3. Typical callback scenario

The ServiceConsumer class implements ServiceCallback (which is often a convenient way to support
callbacks) and passes the this reference to serviceMethod() as the callback reference. The problem with
this approach is there's nothing stopping the Service implementation from upcasting the ServiceCallback
to ServiceConsumer and calling methods that the ServiceConsumer doesn't intend the Service to call.
Sometimes you don't care about this risk -- but sometimes you do. If you do, you could make the callback
object an inner class, or write a do-nothing adapter class (see ServiceCallbackAdapter in Listing 4) and
wrap the ServiceConsumer with the ServiceCallbackAdapter. The ServiceCallbackAdapter
prevents the Service from upcasting the ServiceCallback to a ServiceConsumer.

Listing 4. Adapter class that safely narrows an object to an interface so it cannot be upcast by malicious
code

Writing adapter classes such as ServiceCallbackAdapter is simple but tedious. You have to write a
forwarding method for each method in the wrapped interface. In the case of ServiceCallback, there was
only one method to implement, but some interfaces, such as the Collections or JDBC interfaces, contain
dozens of methods. Modern IDEs reduce the amount of work involved in writing an adapter class by providing
a "Delegate Methods" wizard, but you still have to write one adapter class for each interface you want to wrap,
and there is something unsatisfying about classes that contain only generated code. It seems like there should
be a way to express the "do-nothing narrowing adapter pattern" more compactly.

A generic adapter class

public interface ServiceCallback {
 public void doCallback();
}

public interface Service {
 public void serviceMethod(ServiceCallback callback);
}

public class ServiceConsumer implements ServiceCallback {
 private Service service;

 ...
 public void someMethod() {
 ...
 service.serviceMethod(this);
 }
}

public class ServiceCallbackAdapter implements ServiceCallback {
 private final ServiceCallback cb;

 public ServiceCallbackAdapter(ServiceCallback cb) {
 this.cb = cb;
 }

 public void doCallback() {
 cb.doCallback();
 }
}

Page 3 of 8Java theory and practice: Decorating with dynamic proxies

2006-03-05http://www-128.ibm.com/developerworks/java/library/j-jtp08305.html

The SetProxyFactory class in Listing 2 is certainly more compact than the equivalent adapter class for the
Set interface, but it still only works for one interface: Set. But by using generics, you can easily create a
generic proxy factory that can do the same for any interface, as shown in Listing 5. It is almost identical to
SetProxyFactory, but it can work for any interface. Now you never have to write a narrowing adapter class
again! If you want to create a proxy object that safely narrows an object to interface T, simply invoke
getProxy(T.class,object), and you've got one, without the extra baggage of a pile of adapter classes.

Listing 5. Generic narrowing adapter factory class

Dynamic proxies as Decorators

Of course, the dynamic proxy facility can do a lot more than simply narrow the type of an object to a specific
interface. It is only a short leap from the simple narrowing adapter in Listing 2 and Listing 5 to the Decorator
pattern, where the proxy wraps invocations with additional functionality, such as security checks or logging.
Listing 6 shows a logging InvocationHandler, which writes a log message showing the method invoked,
the arguments passed, and the return value, in addition to simply invoking the method on the desired target
object. With the exception of the reflective invoke() call, all the code here is simply part of generating the
debugging message -- and there's still not that much of it. The code for the proxy factory method is almost
identical to GenericProxyFactory, except that it uses a LoggingInvocationHandler instead of the
anonymous invocation handler.

Listing 6. Proxy-based Decorator that generates debug logging for each method call

public class GenericProxyFactory {

 public static<T> T getProxy(Class<T> intf,
 final T obj) {
 return (T)
 Proxy.newProxyInstance(obj.getClass().getClassLoader(),
 new Class[] { intf },
 new InvocationHandler() {
 public Object invoke(Object proxy, Method method,
 Object[] args) throws Throwable {
 return method.invoke(obj, args);
 }
 });
 }
}

 private static class LoggingInvocationHandler<T>
 implements InvocationHandler {
 final T underlying;

 public LoggingHandler(T underlying) {
 this.underlying = underlying;
 }

 public Object invoke(Object proxy, Method method,
 Object[] args) throws Throwable {
 StringBuffer sb = new StringBuffer();
 sb.append(method.getName()); sb.append("(");
 for (int i=0; args != null && i<args.length; i++) {
 if (i != 0)
 sb.append(", ");
 sb.append(args[i]);
 }
 sb.append(")");
 Object ret = method.invoke(underlying, args);
 if (ret != null) {
 sb.append(" -> "); sb.append(ret);

Page 4 of 8Java theory and practice: Decorating with dynamic proxies

2006-03-05http://www-128.ibm.com/developerworks/java/library/j-jtp08305.html

If you wrap a HashSet with a logging proxy and execute the following simple test program:

You get the following output:

This approach is a nice, easy way to add a debugging wrapper around an object. It is certainly a lot easier (and
more generic) than generating a delegating class and manually creating a lot of println() statements. I could
take this approach a lot further; instead of generating the debugging output unconditionally, the proxy could
instead consult a dynamic configuration store (initialized from a configuration file, and that could be
dynamically modified by a JMX MBean) to determine whether to actually generate the debugging statements,
perhaps even on a class-by-class or instance-by-instance basis.

At this point, I expect the AOP fans in the audience to be practically bursting with "But that's what AOP is
good for!" And it is, but there is more than one way to solve any given problem -- and just because a
technology can solve a problem doesn't mean it is the best solution. In any case, the dynamic proxy approach
has the advantage of working entirely within the bounds of "Pure Java," and not every shop uses (or should
use) AOP.

Dynamic proxies as adapters

Proxies can also be used as true adapters, providing a view of an object that exports a different interface than
the underlying object implements. The invocation handler need not dispatch every method call to the same
underlying object; it could examine the name and dispatch different methods to different objects. As an
example, suppose you have a set of JavaBeans interfaces for representing persistent entities (Person,
Company, and PurchaseOrder) that specify getters and setters for properties, and you are writing a
persistence layer that maps database records to objects implementing these interfaces. Rather than writing or
generating a class for each interface, you might instead have one generic JavaBeans-style proxy class, which
stores properties in a Map instead.

Listing 7 shows a dynamic proxy that examines the name of the called method and implements getter and
setter methods directly by consulting or modifying the property map. This one proxy class can now implement
objects of multiple JavaBeans-style interfaces.

Listing 7. Dynamic proxy class that dispatches getters and setters to a Map

 }
 System.out.println(sb);
 return ret;
 }
 }

 Set s = newLoggingProxy(Set.class, new HashSet());
 s.add("three");
 if (!s.contains("four"))
 s.add("four");
 System.out.println(s);

 add(three) -> true
 contains(four) -> false
 add(four) -> true
 toString() -> [four, three]
 [four, three]

public class JavaBeanProxyFactory {
 private static class JavaBeanProxy implements InvocationHandler {
 Map<String, Object> properties = new HashMap<String,
 Object>();

Page 5 of 8Java theory and practice: Decorating with dynamic proxies

2006-03-05http://www-128.ibm.com/developerworks/java/library/j-jtp08305.html

While there is some potential loss of type-safety because reflection works in terms of Object, the getter
handling in JavaBeanProxyFactory "bakes in" some of the extra type-checking needed, as I do here with the
isInstance() check for getters.

Performance costs

As you've seen, dynamic proxies have the potential to simplify a lot of code -- not only can they replace a lot
of generated code, but one proxy class can replace multiple classes of handwritten or generated code. What is
the cost? There is probably some performance cost because of dispatching methods reflectively instead of
using the built-in virtual method dispatch. In the very early JDKs, reflection performance was poor (as was the
performance of nearly everything else in early JDKs), but reflection has gotten a lot faster in the last 10 years.

Without getting into the subject of benchmark construction, I wrote a simple, unscientific test program that
loops, stuffing data into a Set, randomly inserting, looking up, and removing elements from the Set. I ran it
with three Set implementations: an unadorned HashSet, a handwritten Set adapter that simply forwards all
methods to an underlying HashSet, and a proxy-based Set adapter that also simply forwards all methods to
an underlying HashSet. Each loop iteration generated several random numbers and performed one or more
Set operations. The handwritten adapter generated only a few percent of performance overhead compared to
the raw HashSet (presumably because of effective inline caching at the JVM level and branch prediction at
the hardware level); the proxy adapter was measurably slower than the raw HashSet, but the overhead was
less than a factor of two.

My conclusion from this experiment is that for the vast majority of cases, the proxy approach performs well
enough even for lightweight methods, and as the operations being proxied become more heavyweight (such as
remote method calls or methods that use serialization, perform IO, or fetch data from a database), the proxy
overhead will effectively approach zero. While there certainly will be cases where the proxy approach

 public JavaBeanProxy(Map<String, Object> properties) {
 this.properties.putAll(properties);
 }

 public Object invoke(Object proxy, Method method,
 Object[] args)
 throws Throwable {
 String meth = method.getName();
 if (meth.startsWith("get")) {
 String prop = meth.substring(3);
 Object o = properties.get(prop);
 if (o != null && !method.getReturnType().isInstance(o))
 throw new ClassCastException(o.getClass().getName() +
 " is not a " + method.getReturnType().getName());
 return o;
 }
 else if (meth.startsWith("set")) {
 // Dispatch setters similarly
 }
 else if (meth.startsWith("is")) {
 // Alternate version of get for boolean properties
 }
 else {
 // Can dispatch non get/set/is methods as desired
 }
 }
 }

 public static<T> T getProxy(Class<T> intf,
 Map<String, Object> values) {
 return (T) Proxy.newProxyInstance
 (JavaBeanProxyFactory.class.getClassLoader(),
 new Class[] { intf }, new JavaBeanProxy(values));
 }
}

Page 6 of 8Java theory and practice: Decorating with dynamic proxies

2006-03-05http://www-128.ibm.com/developerworks/java/library/j-jtp08305.html

introduces unacceptable performance overhead, these are likely to constitute the minority of situations.

Conclusion

Dynamic proxies are a powerful and underutilized tool in implementing many design patterns, including
Proxy, Decorator, and Adapter. Proxy-based implementations of these patterns are easy to write, harder to get
wrong, and lend themselves to greater genericness; in many cases, one dynamic proxy class can serve as a
Decorator or Proxy for all interfaces, rather than having to write a static class for each interface. For all but the
most performance-critical applications, the dynamic proxy approach may be preferable to the handwritten or
machine-generated stub approach.

Resources

Learn
"Object Adapter based on Dynamic Proxy" (Heinz Kabutz, Artima Developer, May 2005): Explore the
use of dynamic proxies to implement common design patterns.

"EJB best practices: The limits of delegation" (Brett McLaughlin, developerWorks, December 2002):
Learn how dynamic proxies can simplify the use of the business delegate pattern.

Build interoperable Web services with JSR-109" (Jeffrey Liu and Yen Lu, developerWorks, August
2003): Find out how JSR-109 supports the use of dynamic proxies for Web Services endpoints,
simplifying Web Services development.

Java theory and practice: The complete series by Brian Goetz.

Get products and technologies

JProxy Javadoc: Details and explanation for the JProxy class.

Discuss

Participate in the discussion forum.

developerWorks blogs: Get involved in the developerWorks community.

About the author

Brian Goetz has been a professional software developer for over 18 years. He is a Principal Consultant at
Quiotix, a software development and consulting firm located in Los Altos, California, and he serves on several
JCP Expert Groups. See Brian's published and upcoming articles in popular industry publications.

Page 7 of 8Java theory and practice: Decorating with dynamic proxies

2006-03-05http://www-128.ibm.com/developerworks/java/library/j-jtp08305.html

Page 8 of 8Java theory and practice: Decorating with dynamic proxies

2006-03-05http://www-128.ibm.com/developerworks/java/library/j-jtp08305.html

