
Dynamic code downloading using RMI
(Using the java.rmi.server.codebase

Property)

This tutorial is organized as follows:

1. Starting out
2. What is a codebase?
3. How does it work?
4. Using codebase in RMI for more than just stub downloading
5. Command-line examples
6. Troubleshooting tips

1.0 Starting out
One of the most significant capabilities of the JavaTM platform is the ability to
dynamically download Java software from any Uniform Resource Locator (URL) to a
Java virtual machine* (JVM) running in a separate process, usually on a different
physical system. The result is that a remote system can run a program, for example an
applet, which has never been installed on its disk. For the first few sections of this
document, codebase with regard to applets will be discussed in order to help describe
codebase with regard to Java Remote Method Invocation (RMI).

For example, a JVM running from within a web browser can download the bytecodes for
subclasses of java.applet.Applet and any other classes needed by that applet. The
system on which the browser is running has most likely never run this applet before, nor
installed it on its disk. Once all the necessary classes have been downloaded from the
server, the browser can start the execution of the applet program using the local resources
of the system on which the client browser is running.

Java RMI takes advantage of this capability to download and execute classes and on
systems where those classes have never been installed on disk. Using the RMI API any
JVM, not only those in browsers, can download any Java class file including specialized
RMI stub classes, which enable the execution of method calls on a remote server using
the server system's resources.

The notion of a codebase originates from the use of ClassLoaders in the Java
programming language. When a Java program uses a ClassLoader, that class loader
needs to know the location(s) from which it should be allowed to load classes. Usually, a

class loader is used in conjunction with an HTTP server that is serving up compiled
classes for the Java platform. Most likely, the first ClassLoader/codebase pairing that
you came into contact with was the AppletClassLoader, and the "codebase" part of the
<applet> HTML tag, so this tutorial will assume that you have some experience with
Java RMI programming, as well as writing HTML files that contain applet tags. For
example, the HTML source will contain something like:

<applet height=100 width=100 codebase="myclasses/" code="My.class">
 <param name="ticker">
</applet>

2.0 What is a codebase?
A codebase can be defined as a source, or a place, from which to load classes into a Java
virtual machine. For example, if you invited a new friend over for dinner, you would
need to give that friend directions to the place where you lived, so that he or she could
locate your house. Similarly, you can think of a codebase as the directions that you give
to a JVM, so it can find your [potentially remote] classes.

You can think of your CLASSPATH as a "local codebase", because it is the list of places on
disk from which you load local classes. When loading classes from a local disk-based
source, your CLASSPATH variable is consulted. Your CLASSPATH can be set to take either
relative or absolute path names to directories and/or archives of class files. So just as
CLASSPATH is a kind of "local codebase", the codebase used by applets and remote
objects can be thought of as a "remote codebase".

3.0 How does it work?

3.1 How codebase is used in applets

To interact with an applet, that applet and any classes that it needs to run must be
accessible by remote clients. While applets can be accessed from "ftp://" or local
"file:///" URLs, they are usually accessed from a remote HTTP server.

1. The client browser requests an applet class that is not found in the client's
CLASSPATH

2. The class definition of the applet (and any other class(es) that it needs) is
downloaded from the server to the client using HTTP

3. The applet executes on the client

Figure 1: Downloading applets

The applet's codebase is always relative to the URL of the HTML page in which the
<applet> tag is contained.

3.2 How codebase is used in RMI

Using RMI, applications can create remote objects that accept method calls from clients
in other JVMs. In order for a client to call methods on a remote object, the client must
have a way to communicate with the remote object. Rather than having to program the
client to speak the remote object's protocol, RMI uses special classes called stubs that can
be downloaded to the client that are used to communicate with (make method calls on)
the remote object. The java.rmi.server.codebase property value represents one or
more URL locations from which these stubs (and any classes needed by the stubs) can be
downloaded.

Like applets, the classes needed to execute remote method calls can be downloaded from
"file:///" URLs, but like applets, a "file:///" URL generally requires that the client
and the server reside on the same physical host, unless the file system referred to by the
URL is made available using some other protocol, such as NFS.

Generally, the classes needed to execute remote method calls should be made accessible
from a network resource, such as an HTTP or FTP server.

Figure 2: Downloading RMI stubs

1. The remote object's codebase is specified by the remote object's server by setting
the java.rmi.server.codebase property. The RMI server registers a remote
object, bound to a name, with the RMI registry. The codebase set on the server
JVM is annotated to the remote object reference in the RMI registry.

2. The RMI client requests a reference to a named remote object. The reference (the
remote object's stub instance) is what the client will use to make remote method
calls to the remote object.

3. The RMI registry returns a reference (the stub instance) to the requested class. If
the class definition for the stub instance can be found locally in the client's
CLASSPATH , which is always searched before the codebase, the client will load
the class locally. However, if the definition for the stub is not found in the client's
CLASSPATH, the client will attempt to retrieve the class definition from the remote
object's codebase.

4. The client requests the class definition from the codebase. The codebase the client
uses is the URL that was annotated to the stub instance when the stub class was
loaded by the registry. Back in step 1, the annotated stub for the exported object
was then registered with the RMI registry bound to a name.

5. The class definition for the stub (and any other class(es) that it needs) is
downloaded to the client.

Note: Steps 4 and 5 are the sames steps that the registry took to load the remote
object class, when the remote object was bound to a name in (registered with) the
RMI registry. When the registry attempted to load the remote object's stub class,
it requested the class definition from the codebase associated with that remote
object.

6. Now the client has all the information that it needs to invoke remote methods on
the remote object. The stub instance acts as a proxy to the remote object that

exists on the server; so unlike the applet which uses a codebase to execute code in
its local JVM, the RMI client uses the remote object's codebase to execute code in
another, potentially remote JVM, as illustrated in Figure 3:

Figure 3: RMI client making a remote method call

4.0 Using codebase in RMI for more than just stub
downloading
In addition to downloading stubs and their associated classes to clients, the
java.rmi.server.codebase property can be used to specify a location from which any
class, not only stubs, can be downloaded.

When a client makes a method call to a remote object, the method that it calls could be
written to accept no arguments or a number of arguments. There are three distinct cases
that may occur, based on the data type(s) of the method argument(s).

In the first case, all of the method parameters (and return value) are primitive data types,
so the remote object knows how to interpret them as method parameters, and there is no
need to check its CLASSPATH or any codebase.

In the second case, at least one remote method parameter or the return value is an object,
for which the remote object can find the class definition locally in its CLASSPATH.

In the third case (shown as Step 6, in Figure 4), the remote method receives an object
instance, for which the remote object cannot find the class definition locally in its
CLASSPATH. This type of remote method call is illustrated in Figure 4. The class of the
object sent by the client will be a subtype of the declared parameter type. A subtype is
either:

• An implementation of the interface that is declared as the method parameter (or
return) type

• A subclass of the class that is declared as the method parameter (or return) type

Figure 4: RMI client making a remote method call, passing an unknown subtype as a
method parameter

7. Like the applet's codebase, the client-specified codebase is used to download Remote
classes, non-remote classes, and interfaces to other JVMs. If the codebase property is set
on the client application, then that codebase is annotated to the subtype instance when the
subtype class is loaded by the client. If the codebase is not set on the client, the remote
object will mistakenly use its own codebase.

5.0 Command-line examples
In the case of an applet, the applet codebase value is embedded in an HTML page, as we
saw in the HTML example in the first section of this tutorial.

In the case of Java RMI codebase, rather than having a reference to the class embedded in
an HTML page, the client first contacts the RMI registry for a reference to the remote
object. Because the remote object's codebase can refer to any URL, not just one that is
relative to a known URL, the value of the RMI codebase must be an absolute URL to the
location of the stub class and any other classes needed by the stub class. This value of the
codebase property can refer to:

• The URL of a directory in which the classes are organized in package-named sub-
directories

• The URL of a JAR file in which the classes are organized in package-named
directories

• A space-delimited string containing multiple instances of JAR files and/or
directories that meet the criteria above

Note: When the codebase property value is set to the URL of a directory, the value must
be terminated by a "/".

Examples

If the location of your downloadable classes is on an HTTP server named "webvector", in
the directory "export" (under the web root), your codebase property setting might look
like this:

 -Djava.rmi.server.codebase=http://webvector/export/

If the location of your downloadable classes is on an HTTP server named "webline", in a
JAR file named "mystuff.jar", in the directory "public" (under the web root), your
codebase property setting might look like this:

 -Djava.rmi.server.codebase=http://webline/public/mystuff.jar

Now let's suppose that the location of your downloadable classes has been split between
two JAR files, "myStuff.jar" and "myOtherStuff.jar". If these JAR files are located on
different servers (named "webfront" and "webwave"), your codebase property setting
might look like this:

 -Djava.rmi.server.codebase="http://webfront/myStuff.jar
http://webwave/myOtherStuff.jar"

6.0 Troubleshooting tips
Any serializable class, including RMI stubs, can be downloaded if your RMI programs
are configured properly. Here are the conditions under which dynamic stub downloading
will work:

A. The stub class and any of the classes that the stub relies on are served up from a
URL reachable from the client.
B. The java.rmi.server.codebase property has been set on the server program (or
in the case of activation, the "setup" program) that makes the call to bind or rebind,
such that:

o The value of the codebase property is the URL in step A

and

o If the URL specified as the value of the codebase property is a directory,
it must end in a trailing "/"

C. The rmiregistry cannot find the stub class or any of the classes that the stub
relies on in its CLASSPATH. This is so the codebase gets annotated to the stub when the
registry does its class load of the stub, as a result of calls to bind or rebind in the server
or setup code.

D. The client has installed a SecurityManager that allows the stub to be
downloaded. In the Java 2 SDK, Standard Edition, v1.2 and later this means that the
client must also have a properly configured security policy file.

There are two common problems associated with the java.rmi.server.codebase
property, which are discussed next.

6.1 If you encounter a problem running your RMI server

The first problem you might encounter is the receipt of a ClassNotFoundException
when attempting to bind or rebind a remote object to a name in the registry. This
exception is usually due to a malformed codebase property, resulting in the registry not
being able to locate the remote object's stubs or other classes needed by the stub.

It is important to note that the remote object's stub implements all the same interfaces as
the remote object itself, so those interfaces, as well as any other custom classes declared
as method parameters or return values, must also be available for download from the
specified codebase.

Most frequently, this exception is thrown as a result of omitting the trailing slash from the
URL value of the property. Other reasons would include: the value of the property is not
a URL; the path to the classes specified in the URL is incorrect or misspelled; the stub
class or any other necessary classes are not all available from the specified URL.

The exception that you may encounter in such a case would look like this:

java.rmi.ServerException: RemoteException occurred in server thread;
nested exception is:
 java.rmi.UnmarshalException: error unmarshalling arguments;
nested exception is:
 java.lang.ClassNotFoundException:
examples.callback.MessageReceiverImpl_Stub
java.rmi.UnmarshalException: error unmarshalling arguments; nested
exception is:
 java.lang.ClassNotFoundException:
examples.callback.MessageReceiverImpl_Stub
java.lang.ClassNotFoundException:
examples.callback.MessageReceiverImpl_Stub
 at
sun.rmi.transport.StreamRemoteCall.exceptionReceivedFromServer(Compiled
Code)
 at sun.rmi.transport.StreamRemoteCall.executeCall(Compiled Code)
 at sun.rmi.server.UnicastRef.invoke(Compiled Code)
 at sun.rmi.registry.RegistryImpl_Stub.rebind(Compiled Code)
 at java.rmi.Naming.rebind(Compiled Code)
 at examples.callback.MessageReceiverImpl.main(Compiled Code)
RemoteException occurred in server thread; nested exception is:
 java.rmi.UnmarshalException: error unmarshalling arguments;
nested exception is:
 java.lang.ClassNotFoundException:
examples.callback.MessageReceiverImpl_Stub

6.2 If you encounter a problem running your RMI client

The second problem you could encounter is the receipt of a ClassNotFoundException
when attempting to lookup a remote object in the registry. If you receive this exception
in a stacktrace resulting from an attempt to run your RMI client code, then your problem
is the CLASSPATH with which your RMI registry was started. See requirement C in section
6.0. Here is what the exception will look like:

java.rmi.UnmarshalException: Return value class not found; nested
exception is:
 java.lang.ClassNotFoundException: MyImpl_Stub
 at
sun.rmi.registry.RegistryImpl_Stub.lookup(RegistryImpl_Stub.java:109
 at java.rmi.Naming.lookup(Naming.java:60)
 at RmiClient.main(MyClient.java:28)

Other resources
If you your codebase questions are still unanswered, please take a look through the
archives of the rmi-users email list first.

You may wish to subscribe to the rmi-users email list.

We are very interested in knowing whether these tutorials are useful. Please send any
comments or suggestions to: rmi-comments@java.sun.com, with a subject of "codebase
tutorial".

*As used on this web site, the terms "Java virtual machine" or "JVM" mean a virtual
machine for the Java platform.

