

A Detailed Comparison of CORBA, DCOM and Java/RMI
(with specific code examples)

Gopalan Suresh Raj

Introduction

Distributed object computing extends an object-oriented programming system by allowing objects
to be distributed across a heterogeneous network, so that each of these distributed object
components interoperate as a unified whole. These objects may be distributed on different
computers throughout a network, living within their own address space outside of an application,
and yet appear as though they were local to an application.

Three of the most popular distributed object paradigms are Microsoft's Distributed Component
Object Model (DCOM), OMG's Common Object Request Broker Architecture (CORBA) and
JavaSoft's Java/Remote Method Invocation (Java/RMI). In this article, let us examine the
differences between these three models from a programmer's standpoint and an architectural
standpoint. At the end of this article, you will be able to better appreciate the merits and innards of
each of the distributed object paradigms.

CORBA relies on a protocol called the Internet Inter-ORB Protocol (IIOP) for remoting objects.
Everything in the CORBA architecture depends on an Object Request Broker (ORB). The ORB
acts as a central Object Bus over which each CORBA object interacts transparently with other
CORBA objects located either locally or remotely. Each CORBA server object has an interface and
exposes a set of methods. To request a service, a CORBA client acquires an object reference to a
CORBA server object. The client can now make method calls on the object reference as if the
CORBA server object resided in the client's address space. The ORB is responsible for finding a
CORBA object's implementation, preparing it to receive requests, communicate requests to it and
carry the reply back to the client. A CORBA object interacts with the ORB either through the ORB
interface or through an Object Adapter - either a Basic Object Adapter (BOA) or a Portable
Object Adapter (POA). Since CORBA is just a specification, it can be used on diverse operating
system platforms from mainframes to UNIX boxes to Windows machines to handheld devices as
long as there is an ORB implementation for that platform. Major ORB vendors like Inprise have
CORBA ORB implementations through their VisiBroker product for Windows, UNIX and mainframe
platforms and Iona through their Orbix product.

DCOM which is often called 'COM on the wire', supports remoting objects by running on a protocol
called the Object Remote Procedure Call (ORPC). This ORPC layer is built on top of DCE's RPC
and interacts with COM's run-time services. A DCOM server is a body of code that is capable of
serving up objects of a particular type at runtime. Each DCOM server object can support multiple
interfaces each representing a different behavior of the object. A DCOM client calls into the
exposed methods of a DCOM server by acquiring a pointer to one of the server object's interfaces.
The client object then starts calling the server object's exposed methods through the acquired
interface pointer as if the server object resided in the client's address space. As specified by COM,
a server object's memory layout conforms to the C++ vtable layout. Since the COM specification is
at the binary level it allows DCOM server components to be written in diverse programming
languages like C++, Java, Object Pascal (Delphi), Visual Basic and even COBOL. As long as a
platform supports COM services, DCOM can be used on that platform. DCOM is now heavily used

Page 1 of 14DCOM,CORBA,Java-RMI - A Step by Step Comparison by Gopalan Suresh Raj

2006-03-05http://my.execpc.com/~gopalan/misc/compare.html

on the Windows platform. Companies like Software AG provide COM service implementations
through their EntireX product for UNIX, Linux and mainframe platforms; Digital for the Open VMS
platform and Microsoft for Windows and Solaris platforms.

Java/RMI relies on a protocol called the Java Remote Method Protocol (JRMP). Java relies
heavily on Java Object Serialization, which allows objects to be marshaled (or transmitted) as a
stream. Since Java Object Serialization is specific to Java, both the Java/RMI server object and the
client object have to be written in Java. Each Java/RMI Server object defines an interface which
can be used to access the server object outside of the current Java Virtual Machine(JVM) and on
another machine's JVM. The interface exposes a set of methods which are indicative of the services
offered by the server object. For a client to locate a server object for the first time, RMI depends
on a naming mechanism called an RMIRegistry that runs on the Server machine and holds
information about available Server Objects. A Java/RMI client acquires an object reference to a
Java/RMI server object by doing a lookup for a Server Object reference and invokes methods on
the Server Object as if the Java/RMI server object resided in the client's address space. Java/RMI
server objects are named using URLs and for a client to acquire a server object reference, it should
specify the URL of the server object as you would with the URL to a HTML page. Since Java/RMI
relies on Java, it can be used on diverse operating system platforms from mainframes to UNIX
boxes to Windows machines to handheld devices as long as there is a Java Virtual Machine (JVM)
implementation for that platform. In addition to Javasoft and Microsoft, a lot of other companies
have announced Java Virtual Machine ports.

Comparing Apples to Apples

CORBA 3.0 will add a middleware component model (much like MTS or EJB) to CORBA. Since it is
still in a pre-spec stage, we do not know much about how the CORBA middleware component
model is going to look like. As of CORBA 2.x, there is no middleware component model that CORBA
defines. Though I would really like to compare MTS, EJB and CORBA 3.0's middleware component model
(whatever it's going to be called) , I reserve it for a future article (Click Here...). By the way, there is a lot
of comparison going on between COM and EJB. This is entirely wrong. This is like comparing apples
to oranges. The competing technologies are MTS and EJB. Hence, the real comparison should be
between MTS and EJB.

Application Sample - The StockMarket Server and Client

The StockMarket server reports the stock price of any given symbol. It has a method called
get_price() to get the stock value of a particular symbol.

I have selected Java as the implementation language for these examples here for three reasons :

1. Java/RMI can only be implemented using Java.
2. Since I am comparing Java/RMI with other object technologies, I would have to implement

the DCOM and CORBA objects too in Java.
3. Java is the best language to code CORBA and COM objects in since it keeps the

implementation simple, easy to understand, and is most elegant.

Each of these implementations define an IStockMarket interface. They expose a get_price()
method that returns a float value indicating the stock value of the symbol passed in. We list the
sources from four files. The first set of files are the IDL and Java files that define the interface and
its exposed methods. The second set of files show how the client invokes methods on these
interfaces by acquiring references to the server object. The third set of files show the Server object
implementations. The fourth set of files show the main program implementations that start up the
Remote Server objects for CORBA and Java/RMI. No main program implementation is shown for

Page 2 of 14DCOM,CORBA,Java-RMI - A Step by Step Comparison by Gopalan Suresh Raj

2006-03-05http://my.execpc.com/~gopalan/misc/compare.html

DCOM since the JavaReg program takes up the role of invoking the DCOM Server object on the
Server machine. This means you have to also ensure that JavaReg is present on your server
machine.

The IDL Interface

Whenever a client needs some service from a remote distributed object, it invokes a method
implemented by the remote object. The service that the remote distributed object (Server)
provides is encapsulated as an object and the remote object's interface is described in an Interface
Definition Language (IDL). The interfaces specified in the IDL file serve as a contract between a
remote object server and its clients. Clients can thus interact with these remote object servers by
invoking methods defined in the IDL.

DCOM - The DCOM IDL file shows that our DCOM server implements a dual interface. COM
supports both static and dynamic invocation of objects. It is a bit different than how CORBA does
through its Dynamic Invocation Interface (DII) or Java does with Reflection. For the static
invocation to work, The Microsoft IDL (MIDL) compiler creates the proxy and stub code when run
on the IDL file. These are registered in the systems registry to allow greater flexibility of their use.
This is the vtable method of invoking objects. For dynamic invocation to work, COM objects
implement an interface called IDispatch. As with CORBA or Java/RMI, to allow for dynamic
invocation, there has to be some way to describe the object methods and their parameters. Type
libraries are files that describe the object, and COM provides interfaces, obtained through the
IDispatch interface, to query an Object's type library. In COM, an object whose methods are
dynamically invoked must be written to support IDispatch. This is unlike CORBA where any object
can be invoked with DII as long as the object information is in the Implementation Repository.
The DCOM IDL file also associates the IStockMarket interface with an object class StockMarket as
shown in the coclass block. Also notice that in DCOM, each interface is assigned a Universally
Unique IDentifier (UUID) called the Interface ID (IID). Similarly, each object class is assigned
a unique UUID called a CLasS ID (CLSID). COM gives up on multiple inheritance to provide a
binary standard for object implementations. Instead of supporting multiple inheritance, COM uses
the notion of an object having multiple interfaces to achieve the same purpose. This also allows for
some flexible forms of programming.

DCOM - IDL CORBA - IDL Java/RMI - Interface
definition

[
uuid(7371a240-2e51-11d0-
b4c1-444553540000),
version(1.0)
]
library SimpleStocks
{
importlib("stdole32.tlb");
[
uuid(BC4C0AB0-5A45-11d2-
99C5-00A02414C655),
dual
]
interface IStockMarket :
IDispatch
{
HRESULT get_price([in]
BSTR p1, [out, retval]
float * rtn);

module SimpleStocks
{
interface StockMarket
{
float get_price(in string
symbol);
};
};

package SimpleStocks;
import java.rmi.*;
import java.util.*;

public interface
StockMarket extends
java.rmi.Remote
{
float get_price(String
symbol) throws

Page 3 of 14DCOM,CORBA,Java-RMI - A Step by Step Comparison by Gopalan Suresh Raj

2006-03-05http://my.execpc.com/~gopalan/misc/compare.html

CORBA - Both CORBA and Java/RMI support multiple inheritance at the IDL or interface level. One
difference between CORBA (and Java/RMI) IDLs and COM IDLs is that CORBA (and Java/RMI) can
specify exceptions in the IDLs while DCOM does not. In CORBA, the IDL compiler generates type
information for each method in an interface and stores it in the Interface Repository (IR). A
client can thus query the IR to get run-time information about a particular interface and then use
that information to create and invoke a method on the remote CORBA server object dynamically
through the Dynamic Invocation Interface (DII). Similarly, on the server side, the Dynamic
Skeletion Interface (DSI) allows a client to invoke an operation of a remote CORBA Server
object that has no compile time knowledge of the type of object it is implementing. The CORBA IDL
file shows the StockMarket interface with the get_price() method. When an IDL compiler
compiles this IDL file it generates files for stubs and skeletons.

Java/RMI - Notice that unlike the other two, Java/RMI uses a .java file to define it's remote
interface. This interface will ensure type consistency between the Java/RMI client and the Java/RMI
Server Object. Every remotable server object in Java/RMI has to extend the java.rmi.Remote
class. Similarly, any method that can be remotely invoked in Java/RMI may throw a
java.rmi.RemoteException. java.rmi.RemoteException is the superclass of many more RMI
specific exception classes. We define an interface called StockMarket which extends the
java.rmi.Remote class. Also notice that the get_price() method throws a
java.rmi.RemoteException.

How remoting works

To invoke a remote method, the client makes a call to the client proxy. The client side proxy packs
the call parameters into a request message and invokes a wire protocol like IIOP(in CORBA) or
ORPC(in DCOM) or JRMP(in Java/RMI) to ship the message to the server. At the server side, the
wire protocol delivers the message to the server side stub. The server side stub then unpacks the
message and calls the actual method on the object. In both CORBA and Java/RMI, the client stub is
called the stub or proxy and the server stub is called skeleton. In DCOM, the client stub is
referred to as proxy and the server stub is referred to as stub.

Implementing the Distributed Object Client

DCOM Client - The DCOM client shown below calls into the DCOM server object's methods by first
acquiring a pointer to the server object. The new keyword here instantiates the StockMarket DCOM
Server object. This leads the Microsoft JVM to use the CLSID to make a CoCreateInstance() call.
The IUnknown pointer returned by CoCreateInstance() is then cast to IStockMarket, as shown
below:

}

[
uuid(BC4C0AB3-5A45-11d2-
99C5-00A02414C655),
]
coclass StockMarket
{
interface IStockMarket;
};
};

RemoteException;
}

File :
StockMarketLib.idl

File : StockMarket.idl File : StockMarket.java

Page 4 of 14DCOM,CORBA,Java-RMI - A Step by Step Comparison by Gopalan Suresh Raj

2006-03-05http://my.execpc.com/~gopalan/misc/compare.html

IStockMarket market = (IStockMarket)new simplestocks.StockMarket();

The cast to IStockMarket forces the Microsoft JVM to call the DCOM server object's
QueryInterface() function to request a pointer to IStockMarket. If the interface is not supported,
a ClassCastException is thrown. Reference Counting is handled automatically in Java/COM and
the Microsoft JVM takes up the responsibility of calling IUnknown::AddRef() and Java's Garbage
Collector automatically calls IUnknown::Release(). Once the client acquires a valid pointer to the
DCOM server object, it calls into its methods as though it were a local object running in the client's
address space.

CORBA Client - The CORBA client will first have to initialize the CORBA ORB by making a call to
ORB.init(). It then instantiates a CORBA server object by binding to a server object's remote
reference. Though both Inprise's VisiBroker and Iona's Orbix have a bind() method to bind and
obtain a server object reference like,

StockMarket market = StockMarketHelper.bind(orb); // this is Visibroker or Orbix
specific

we will use the CORBA Naming Service to do the same thing so that we are compatible
with any ORB. We first look up a NameService and obtain a CORBA object reference.
We use the returned CORBA.Object to narrow down to a naming context.

NamingContext root = NamingContextHelper.narrow(orb.resolve_initial_references
("NameService"));

We now create a NameComponent and narrow down to the server object reference by
resolving the name in the naming context that was returned to us by the COSNaming
(CORBA Object Services - Naming) helper classes.

NameComponent[] name = new NameComponent[1] ;
name[0] = new NameComponent("NASDAQ","");

StockMarket market = StockMarketHelper.narrow(root.resolve(name));

Once the client has acquired a valid remote object reference to the CORBA server object, it can call
into the server object's methods as if the server object resided in the client's address space.

DCOM - Client implementation CORBA - Client implementation Java/RMI - Client
implementation

//
//
// StockMarketClient
//
//
import simplestocks.*;

public class
StockMarketClient
{
public static void main
(String[] args)
{
try
{
IStockMarket market =
(IStockMarket)new

//
//
// StockMarketClient
//
//
import org.omg.CORBA.*;
import org.omg.CosNaming.*;
import SimpleStocks.*;

public class StockMarketClient
{
public static void main(String[]
args)
{
try
{
ORB orb = ORB.init();

//
//
// StockMarketClient
//
//
import java.rmi.*;
import java.rmi.regist
import SimpleStocks.*

public class
StockMarketClient
{
public static void mai
(String[] args)throws
Exception
{
if

Page 5 of 14DCOM,CORBA,Java-RMI - A Step by Step Comparison by Gopalan Suresh Raj

2006-03-05http://my.execpc.com/~gopalan/misc/compare.html

Java/RMI Client - The Java/RMI client first installs a security manager before doing any remote
calls.You do this by making a call to System.setSecurityManager(). The RMISecurityManager
provided by JavaSoft is an attempt by JavaSoft from having you to write your own implementation.
However, JavaSoft does not force you to use it's own RMISecurityManager - you can write your
own security manager and install it if you want to.

The Java/RMI client then instantiates a Java/RMI server object by binding to a server object's
remote reference through the call to Naming.Lookup().

StockMarket market = (StockMarket)Naming.lookup("rmi://localhost/NASDAQ");

Once the client has acquired a valid object reference to the Java/RMI server object, it can call into
the server object's methods as if the server object resided in the client's address space.

Implementing the Distributed Object Server

DCOM Server Object - All the classes that are required for Java/COM are defined in the
com.ms.com package. The DCOM Server object shown below implements the IStockMarket
interface that we defined in our IDL file. The StockMarket class and the get_price() method are
declared as public so that they will be accessible from outside the package. Also notice the CLSID

simplestocks.StockMarket();
System.out.println("The
price of MY COMPANY is " +
market.get_price
("MY_COMPANY"));
}
catch
(com.ms.com.ComFailException
e)
{
System.out.println("COM
Exception:");
System.out.println
(e.getHResult());
System.out.println
(e.getMessage());
}
}
}

NamingContext root =
NamingContextHelper.narrow
(orb.resolve_initial_references
("NameService"));
NameComponent[] name = new
NameComponent[1] ;
name[0] = new NameComponent
("NASDAQ","");

StockMarket market =
StockMarketHelper.narrow
(root.resolve(name));
System.out.println("Price of MY
COMPANY is " + market.get_price
("MY_COMPANY"));
}
catch(SystemException e)
{
System.err.println(e);
}
}
}

(System.getSecurityMan
() == null)
{
System.setSecurityMana
(new RMISecurityManage
}
StockMarket market =
(StockMarket)Naming.lo
("rmi://localhost/NASD
System.out.println("T
price of MY COMPANY is
+ market.get_price
("MY_COMPANY"));
}
}

File :
StockMarketClient.java

File :
StockMarketClient.java

File :
StockMarketClient.j

Note : It is not mandatory to set a security manager for the use of Java/RMI. The reason to do this is so that the Java/RMI
client can handle serialized objects for which the client does not have a corresponding class file in its local CLASSPATH. If the
security manager is set to the RMISecurityManager, the client can download and instantiate class files from the Java/RMI
server. This mechanism is actually fairly important to Java/RMI, as it allows the server to generate subclasses for any
Serializable object and provide the code to handle these subclasses to the client.
It is entirely possible to use Java/RMI without setting the security manager, as long as the client has access to definitions for
all objects that might be returned. Java/RMI's ability to handle the passing of any object at any time using Serialization and
class file download is possible only because the JVM provides a portable and secure environment for passing around Java byte
codes that form the Java executable from which Java objects can be reconstructed at run-time, if required.

Page 6 of 14DCOM,CORBA,Java-RMI - A Step by Step Comparison by Gopalan Suresh Raj

2006-03-05http://my.execpc.com/~gopalan/misc/compare.html

specified and declared as private. It is used by COM to instantiate the object through
CoCreateInstance() when a DCOM client does a new remotely. The get_price() method is
capable of throwing a ComException.

CORBA Server Object - All the classes that are required for CORBA are defined in the
org.omg.CORBA package. The CORBA Server object shown below extends the
_StockMarketImplBase class that is a skeleton class generated by our CORBA IDL compiler. The
StockMarketImpl class and the get_price() method are declared as public so that they will be
accessible from outside the package. The StockMarketImpl class implements all the operations
declared in our CORBA IDL file. We need to provide a constructor which takes in a name of type
String for our CORBA object server class since the name of the CORBA Server class has to be
passed on to the _StockMarketImplBase class object, so that it can be associated with that name
with all the CORBA services.

DCOM - Server
implementation

CORBA - Server
implementation Java/RMI - Server implementation

//
//
//
StockMarketServer
//
//

import
com.ms.com.*;
import
simplestocks.*;

public class
StockMarket
implements
IStockMarket
{
private static
final String CLSID
=
"BC4C0AB3-5A45-
11d2-99C5-
00A02414C655";

public float
get_price(String
symbol)
{
float price = 0;

for(int i = 0; i <
symbol.length();
i++)
{
price += (int)
symbol.charAt(i);
}

price /= 5;
return price;

//
//
// StockMarketServer
//
//

import org.omg.CORBA.*;
import SimpleStocks.*;

public class
StockMarketImpl extends
_StockMarketImplBase
{

public float get_price
(String symbol)
{
float price = 0;
for(int i = 0; i <
symbol.length(); i++)
{
price += (int)
symbol.charAt(i);
}
price /= 5;
return price;
}

public StockMarketImpl
(String name)
{
super(name);
}

}

//
//
// StockMarketServer
//
//

package SimpleStocks;
import java.rmi.*;
import
java.rmi.server.UnicastRemoteObject;

public class StockMarketImpl extends
UnicastRemoteObject implements
StockMarket
{

public float get_price(String
symbol)
{
float price = 0;
for(int i = 0; i < symbol.length();
i++)
{
price += (int) symbol.charAt(i);
}
price /= 5;
return price;
}

public StockMarketImpl(String
name) throws RemoteException
{
try
{
Naming.rebind(name, this);
}
catch(Exception e)
{
System.out.println(e);
}

Page 7 of 14DCOM,CORBA,Java-RMI - A Step by Step Comparison by Gopalan Suresh Raj

2006-03-05http://my.execpc.com/~gopalan/misc/compare.html

Java/RMI Server Object - All the classes that are required for Java/RMI are defined in the
java.rmi package. The Java/RMI Server object shown extends the UnicastRemoteObject class
that has all of Java/RMI's remoting methods defined and implements the StockMarket interface.
The StockMarketImpl class and the get_price() method are declared as public so that they will
be accessible from outside the package. The StockMarketImpl class implements all the operations
declared in our Java/RMI interface file. We need to provide a constructor which takes in a name of
type String for our Java/RMI object server class since the name of the Java/RMI Server class is
used to establish a binding and associate a public name with this Java/RMI Server Object in the
RMIRegistry. The get_price() method is capable of throwing a RemoteException since it is a
remotable method.

The Server Main Programs

CORBA Server Main - The first thing that has to be done by the main program is to initialize the
CORBA ORB using ORB.init(). An Object Adapter (OA) sits on top of the ORB, and is
responsible for connecting the CORBA server object implementation to the CORBA ORB. Object
Adapters provide services like generation and interpretation of object references, method
invocation, object activation and deactivation, and mapping object references to implementations.
You have to initialize either the Basic Object Adapter(BOA) or the Portable Object Adapter
(POA) depending on what your ORB supports. (Note : I use Inprise's VisiBroker as my CORBA
ORB and hence I conform to its implementation requirement where I need to init the BOA). You do
this by calling orb.BOA_init(). We then create the CORBA Server object with the call

StockMarketImpl stockMarketImpl = new StockMarketImpl("NASDAQ");

Note that we pass in a name "NASDAQ" by which our object is identified by all CORBA services. We
then inform the ORB that the Server Object is ready to receive invocations by the statement:

boa.obj_is_ready(stockMarketImpl);

Since we are using the CORBA Object Service's Naming Service for our clients to connect to us, we
will have to bind our server object with a naming service, so that clients would be able to find us.
The following code helps us to do that. (Note : This ensures that our code will work with any
CORBA ORB. If our clients use the bind() method -specific to VisiBroker and Orbix- to connect to
the server object we do not need to do this.)
org.omg.CORBA.Object object = orb.resolve_initial_references("NameService");
NamingContext root = NamingContextHelper.narrow(object) ;
NameComponent[] name = new NameComponent[1];
name[0] = new NameComponent("NASDAQ", "");
root.rebind(name, stockMarketImpl);

The next statement ensures that our main program sleeps on a daemon thread and does not fall
off and exit the program.

boa.impl_is_ready();

We now enter into an event loop and are in that loop till the main program is shut down.

}

}

}

}

File :
StockMarket.java

File :
StockMarketImpl.java

File : StockMarketImpl.java

Page 8 of 14DCOM,CORBA,Java-RMI - A Step by Step Comparison by Gopalan Suresh Raj

2006-03-05http://my.execpc.com/~gopalan/misc/compare.html

Java/RMI Server Main - The Java/RMI client will first have to install a security manager before
doing any remote calls. You do this by making a call to System.setSecurityManager(). We then
create the Java/RMI Server object with the call

StockMarketImpl stockMarketImpl = new StockMarketImpl("NASDAQ");

and remain there till we are shut down.

DCOM - Notice that we have not provided a Main program for our DCOM Server implementation.
The Java Support in Internet Explorer runs as an in-process server, and in-process servers
cannot normally be remoted using the Windows NT 4.0 Distributed COM (DCOM). However, it is
possible to launch a "surrogate" .EXE in its own process that then loads the in-process server.

CORBA - Server Main Java/RMI - Server Main
//
//
// StockMarketServer Main
//
//
import org.omg.CORBA.*;
import org.omg.CosNaming.*;
import SimpleStocks.*;

public class StockMarketServer
{

public static void main(String[] args)
{
try
{
ORB orb = ORB.init();
BOA boa = orb.BOA_init();
StockMarketImpl stockMarketImpl = new
StockMarketImpl("NASDAQ");
boa.obj_is_ready(stockMarketImpl);

org.omg.CORBA.Object object =
orb.resolve_initial_references
("NameService");
NamingContext root =
NamingContextHelper.narrow(object) ;
NameComponent[] name = new NameComponent
[1];
name[0] = new NameComponent("NASDAQ",
"");
root.rebind(name, stockMarketImpl);

boa.impl_is_ready();
}
catch(Exception e)
{
e.printStackTrace();
}
}
}

//
//
// StockMarketServer Main
//
//
import java.rmi.*;
import
java.rmi.server.UnicastRemoteObject;
import SimpleStocks.*;

public class StockMarketServer
{

public static void main(String[] args)
throws Exception
{
if(System.getSecurityManager() == null)
{
System.setSecurityManager(new
RMISecurityManager());
}
StockMarketImpl stockMarketImpl = new
StockMarketImpl("NASDAQ");
}

}

File : StockMarketServer.java File : StockMarketServer.java

Page 9 of 14DCOM,CORBA,Java-RMI - A Step by Step Comparison by Gopalan Suresh Raj

2006-03-05http://my.execpc.com/~gopalan/misc/compare.html

This surrogate can then be remoted using DCOM, in effect allowing the in-process server to be
remoted.You can use JavaReg's /surrogate option to support remote access to a COM class
implemented in Java. When first registering the class, specify the /surrogate option on the
command line. For example:

javareg /register /class:StockMarket /clsid:{FE19E681-508B-11d2-A187-
000000000000} /surrogate

This adds a LocalServer32 key to the registry in addition to the usual InprocServer32 key. The
command line under the LocalServer32 key specifies JavaReg with the /surrogate but without
the /register option.

HKEY_CLASSES_ROOT
CLSID
{BC4C0AB3-5A45-11d2-99C5-00A02414C655}
InprocServer32 = msjava.dll
LocalServer32 = javareg /clsid:{BC4C0AB3-5A45-11d2-99C5-00A02414C655} /surrogate

This causes JavaReg to act as the surrogate itself. When a remote client requests services from the
COM class that you've implemented using Java, JavaReg is invoked. JavaReg then loads the Java
Support in Internet Explorer with the specified Java class. (This means that when distributing your
Java program, your installation program must install JavaReg along with the Java class.) You can
remove the LocalServer32 key by rerunning JavaReg with the /class option, specifying the
same class name, but without the /clsid or /surrogate options

javareg /register /class:StockMarket

Conclusion

The architectures of CORBA, DCOM and Java/RMI provide mechanisms for transparent invocation

DCOM - Registry File
REGEDIT4

[HKEY_CLASSES_ROOT\CLSID\{BC4C0AB3-5A45-11d2-99C5-00A02414C655}]
@="Java Class: StockMarket"
"AppID"="{BC4C0AB3-5A45-11d2-99C5-00A02414C655}"

[HKEY_CLASSES_ROOT\CLSID\{BC4C0AB3-5A45-11d2-99C5-00A02414C655}\InprocServer32]
@="MSJAVA.DLL"
"ThreadingModel"="Both"
"JavaClass"="StockMarket"

[HKEY_CLASSES_ROOT\CLSID\{BC4C0AB3-5A45-11d2-99C5-00A02414C655}\LocalServer32]
@="javareg /clsid:{BC4C0AB3-5A45-11d2-99C5-00A02414C655} /surrogate"

[HKEY_CLASSES_ROOT\CLSID\{BC4C0AB3-5A45-11d2-99C5-00A02414C655}\Implemented
Categories]

[HKEY_CLASSES_ROOT\CLSID\{BC4C0AB3-5A45-11d2-99C5-00A02414C655}\Implemented
Categories\{BE0975F0-BBDD-11CF-97DF-00AA001F73C1}]

[HKEY_CLASSES_ROOT\AppID\{BC4C0AB3-5A45-11d2-99C5-00A02414C655}]
@="Java Class: StockMarket"

File : StockMarket.reg

Page 10 of 14DCOM,CORBA,Java-RMI - A Step by Step Comparison by Gopalan Suresh ...

2006-03-05http://my.execpc.com/~gopalan/misc/compare.html

and accessing of remote distributed objects. Though the mechanisms that they employ to achieve
remoting may be different, the approach each of them take is more or less similar.

DCOM CORBA Java/RMI
Supports multiple interfaces
for objects and uses the
QueryInterface() method
to navigate among
interfaces. This means that
a client proxy dynamically
loads multiple server stubs
in the remoting layer
depending on the number of
interfaces being used.

Supports multiple
inheritance at the interface
level

Supports multiple inheritance at the
interface level

Every object implements
IUnknown.

Every interface inherits from
CORBA.Object

Every server object implements
java.rmi.Remote (Note :
java.rmi.UnicastRemoteObject is
merely a convenience class which
happens to call
UnicastRemoteObject.exportObject
(this) in its constructors and
provide equals() and hashCode()
methods)

Uniquely identifies a remote
server object through its
interface pointer, which
serves as the object handle
at run-time.

Uniquely identifies remote
server objects through
object references(objref),
which serves as the object
handle at run-time. These
object references can be
externalized (persistified)
into strings which can then
be converted back into an
objref.

Uniquely identifies remote server
objects with the ObjID, which serves
as the object handle at run-time.
When you .toString() a remote
reference, there will be a substring
such as "[1db35d7f:d32ec5b8d3:-
8000, 0]" which is unique to the
remote server object.

Uniquely identifies an
interface using the concept
of Interface IDs (IID) and
uniquely identifies a named
implementation of the
server object using the
concept of Class IDs
(CLSID) the mapping of
which is found in the
registry.

Uniquely identifies an
interface using the interface
name and uniquely identifies
a named implementation of
the server object by its
mapping to a name in the
Implementation Repository

Uniquely identifies an interface using
the interface name and uniquely
identifies a named implementation of
the server object by its mapping to a
URL in the Registry

The remote server object
reference generation is
performed on the wire
protocol by the Object
Exporter

The remote server object
reference generation is
performed on the wire
protocol by the Object
Adapter

The remote server object reference
generation is performed by the call to
the method
UnicastRemoteObject.exportObject
(this)

Tasks like object
registration, skeleton
instantiation etc. are either

The constructor implicitly
performs common tasks like
object registration, skeleton

The RMIRegistry performs common
tasks like object registration through
the Naming class.

Page 11 of 14DCOM,CORBA,Java-RMI - A Step by Step Comparison by Gopalan Suresh ...

2006-03-05http://my.execpc.com/~gopalan/misc/compare.html

explicitly performed by the
server program or handled
dynamically by the COM
run-time system.

instantiation etc UnicastRemoteObject.exportObject
(this) method performs skeleton
instantiation and it is implicitly called
in the object constructor.

Uses the Object Remote
Procedure Call(ORPC) as its
underlying remoting
protocol

Uses the Internet Inter-ORB
Protocol(IIOP) as its
underlying remoting
protocol

Uses the Java Remote Method
Protocol(JRMP) as its underlying
remoting protocol (at least for now)

When a client object needs
to activate a server object,
it can do a
CoCreateInstance()-
(Note:There are other ways that the
client can get a server's interface
pointer, but we won't go into that
here)

When a client object needs
to activate a server object,
it binds to a naming or a
trader service - (Note:There
are other ways that the client can get
a server reference, but we won't go
into that here)

When a client object needs a server
object reference, it has to do a
lookup() on the remote server
object's URL name.

The object handle that the
client uses is the interface
pointer

The object handle that the
client uses is the Object
Reference

The object handle that the client uses
is the Object Reference

The mapping of Object
Name to its Implementation
is handled by the Registry

The mapping of Object
Name to its Implementation
is handled by the
Implementation Repository

The mapping of Object Name to its
Implementation is handled by the
RMIRegistry

The type information for
methods is held in the Type
Library

The type information for
methods is held in the
Interface Repository

Any type information is held by the
Object itself which can be queried
using Reflection and Introspection

The responsibility of locating
an object implementation
falls on the Service Control
Manager (SCM)

The responsibility of locating
an object implementation
falls on the Object Request
Broker (ORB)

The responsibility of locating an
object implementation falls on the
Java Virtual Machine (JVM)

The responsibility of
activating an object
implementation falls on the
Service Control Manager
(SCM)

The responsibility of locating
an object implementation
falls on the Object Adapter
(OA) - either the Basic
Object Adapter (BOA) or the
Portable Object Adapter
(POA)

The responsibility of activating an
object implementation falls on the
Java Virtual Machine (JVM)

The client side stub is called
a proxy

The client side stub is called
a proxy or stub

The client side stub is called a proxy
or stub

The server side stub is
called stub

The server side stub is
called a skeleton

The server side stub is called a
skeleton

All parameters passed
between the client and
server objects are defined in
the Interface Definition file.
Hence, depending on what
the IDL specifies,
parameters are passed
either by value or by
reference.

When passing parameters
between the client and the
remote server object, all
interface types are passed
by reference. All other
objects are passed by value
including highly complex
data types

When passing parameters between
the client and the remote server
object, all objects implementing
interfaces extending
java.rmi.Remote are passed by
remote reference. All other objects
are passed by value

Attempts to perform Does not attempt to Attempts to perform distributed

Page 12 of 14DCOM,CORBA,Java-RMI - A Step by Step Comparison by Gopalan Suresh ...

2006-03-05http://my.execpc.com/~gopalan/misc/compare.html

The Sources

distributed garbage
collection on the wire by
pinging. The DCOM wire
protocol uses a Pinging
mechanism to garbage
collect remote server object
references. These are
encapsulated in the
IOXIDResolver interface.

perform general-purpose
distributed garbage
collection.

garbage collection of remote server
objects using the mechanisms
bundled in the JVM

Allows you to define
arbitrarily complex structs,
discriminated unions and
conformant arrays in IDL
and pass these as method
parameters. Complex types
that will cross interface
boundaries must be
declared in the IDL.

Complex types that will
cross interface boundaries
must be declared in the IDL

Any Serializable Java object can be
passed as a parameter across
processes.

Will run on any platform as
long as there is a COM
Service implementation for
that platform (like Software
AG's EntireX)

Will run on any platform as
long as there is a CORBA
ORB implementation for that
platform (like Inprise's
VisiBroker)

Will run on any platform as long as
there is a Java Virtual Machine
implementation for that platform
(provided by a whole lot of
companies in addition to JavaSoft and
Microsoft)

Since the specification is at
the binary level, diverse
programming languages like
C++, Java, Object Pascal
(Delphi), Visual Basic and
even COBOL can be used to
code these objects

Since this is just a
specification, diverse
programming languages can
be used to code these
objects as long as there are
ORB libraries you can use to
code in that language

Since it relies heavily on Java Object
Serialization, these objects can only
be coded in the Java language

Each method call returns a
well-defined "flat" structure
of type HRESULT, whose bit
settings encode the return
status. For richer exception
handling it uses Error
Objects (of type
IErrorInfo), and the server
object has to implement the
ISupportErrorInfo
interface.

Exception handling is taken
care of by Exception
Objects. When a distributed
object throws an exception
object, the ORB tranparently
serializes and marshals it
across the wire.

Allows throwing exceptions which are
then serialized and marshaled across
the wire.

DCOM CORBA Java/RMI
Get the DCOM Visual J++
1.1 project in a zip file
from here

StockDCOM.zip

Get the CORBA JBuilder 2
project in a zip file from

here StockCORBA.zip

Get the Java/RMI JBuilder
2 project in a zip file

from here StockRMI.zip

Page 13 of 14DCOM,CORBA,Java-RMI - A Step by Step Comparison by Gopalan Suresh ...

2006-03-05http://my.execpc.com/~gopalan/misc/compare.html

Where do we go from here...

The moment we talk of comparisons, we start comparing features one after the other. There is a lot more to
these than what I have discussed above. In fact, whole new powerful models are being built based on or around
these three remoting paradigms. Since the DCOM, CORBA and Java/RMI remoting models are the basis for a lot
of other paradigms built on top of them, the moment we talk of these other paradigms, it is the start of a totally
new and different comparison.

I could have gone on comparing MTS and EJB next, or DNA and J2EE, or MSMQ and JMS, or Jini and
Universal Plug and Play... But they are entirely different comparisons. I have to stop at some point and I
decided that I stop right here, giving myself an opportunity to write about other technology comparisons in future
articles.

Author Bibliography

Gopalan Suresh Raj is a Software Architect, Developer and an active Author. He is contributing author to a
couple of books "Enterprise Java Computing-Applications and Architecture" and "The Awesome Power of
JavaBeans". His expertise spans enterprise component architectures and distributed object computing. Visit him
at his Web Cornucopia© site (http://gsraj.tripod.com/) or mail him at gopalan@gmx.com.

File : StockDCOM.zip File : StockCORBA.zip File : StockRMI.zip

Acknowledgements
A lot of people took the time to review this write-up and offer their valuble comments. I
thank all of them. In particular, I would like to thank Don Box (DevelopMentor), Adrian
Colley (JavaSoft-RMI team), Dr.Doug C. Schmidt (Washington University), Rajiv
Delwadia, Tarak Modi (both of Clarus Corp) and Jon Abbey (Applied Research
Laboratories). Thanks to Salil Deshpande (Inprise) who in the first place instigated me to
write a comparison and for giving me some good feedback and great suggestions.

I am grateful to Nat Brown (Microsoft-Author, COM spec.) for taking time to review this
write-up and offer his invaluble comments.

I am still receiving excellent comments and suggestions from various people. This article
reflects the discussions that I have had with a lot of them. The acknowledgements column is
a way of showing my appreciation to all these people who have said 'We Care'.

click here to go to
My Advanced Java / J2EE Tutorial
HomePage...

click here to go to
My COM+ / DNA Tutorial HomePage...

click here to go to
My CORBA Tutorial HomePage...

Page 14 of 14DCOM,CORBA,Java-RMI - A Step by Step Comparison by Gopalan Suresh ...

2006-03-05http://my.execpc.com/~gopalan/misc/compare.html

