
1-local 17/12-competitive Algorithm for
Multicoloring Hexagonal Graphs?

Rafa l Witkowski

Adam Mickiewicz University,
Faculty of Mathematics and Computer Science,

Poznań, Poland
rmiw@amu.edu.pl

Abstract. In the frequency allocation problem we are given a cellu-
lar telephone network whose geographical coverage area is divided into
cells where phone calls are serviced by frequencies assigned to them,
so that none of the pairs of calls emanating from the same or neigh-
boring cells is assigned the same frequency. The problem is to use the
frequencies efficiently, i.e. minimize the span of used frequencies. The
frequency allocation problem can be regarded as a multicoloring prob-
lem on a weighted hexagonal graph. In this paper we present a 1-local
17/12-competitive distributed algorithm for a multicoloring of hexagonal
graph, thereby improving the competitiveness ratio of previously known
best 1-local 13/9-competitive algorithm (see [1]).

1 Introduction

The basic problem concerning cellular networks concentrates on assigning sets
of frequencies (colors) to transmitters (vertices) in order to avoid unacceptable
interference (see [7]). In an ordinary cellular model the transmitters are centers
of hexagonal cells and the corresponding adjacency graph is a subgraph of the
infinite triangular lattice. In our model to each vertex v of a the triangular lattice
T we assign a non-negative integer d(v), called the demand (or weight) of the
vertex v. A proper multicoloring of G is a mapping ϕ from V (G) to subsets of
integers (colors) [n] = {1, 2, . . . , n}, such that |ϕ(v)| = d(v) for any vertex v ∈ G
and ϕ(v)∩ϕ(u) = ∅ for any pair of adjacent vertices u and v in the graph G. The
minimal n for which there exists a proper multicoloring of G, denoted by χm(G),
is called the multichromatic number of G. A hexagonal graph G = (V,E, d) is the
vertex weighted subgraph of T , induced by the set of its vertices with positive
demands (the idea of hexagonal graphs arise naturally in studies concerning
cellular networks). The multichromatic number is closely related to the weighted
clique number ω(G), which is defined as the maximum over all cliques of G of
their weights, where the weight of a clique is the sum of demands on its vertices.
Obviously, for any graph, χm(G) ≥ ω(G), while for hexagonal graphs (see, for
example, [2], [3], [6]), χm(G) ≤

⌈
4ω(G)

3

⌉
+ O(1). Since all proofs of the upper

? This work was supported by grant N206 017 32/2452 for years 2007-2010

2 Rafa l Witkowski

bound are constructive, therefore it implies the existence of a 4/3-competitive
algorithm, i.e. algorithms which can online serve calls with the approximation
ratio equal to 4/3 respectively to the weighted clique number (see [5], [8]). It
should be also mentioned that McDiarmid and Reed showed in [3] that to decide
whether χm(G) = ω(G) is NP-complete.

In distributed graph algorithms a special role plays their ”locality” property.
An algorithm is k-local if the computation at any vertex v uses only the infor-
mation about the demands of the vertices at distance at most k from v. For
hexagonal graphs the best previously known 1-local algorithm for multicoloring
is 13/9-competitive, and it has been presented in [1]. In this paper we develop
a new 1-local algorithm which uses no more than

⌈
17
12ω(G)

⌉
+O(1) colors, thus

improving the result from [1]. Our algorithm substantially differs from previous
ones. Those algorithms (e.g. [1], [2]) are composed of two stages. At the first
stage, a triangle-free hexagonal graph with weighted clique number no larger
than dω(G)/3e is constructed from G, while at the second stage an algorithm
for multicoloring a triangle-free hexagonal graph is used (see [1], [10], [11]). Our
algorithm skips the second stage entirely.

Theorem 1. There is a 1-local distributed approximation algorithm for multi-
coloring hexagonal graphs which uses at most

⌈
17
12ω(G)

⌉
+ O(1) colors. Time

complexity of the algorithm at each vertex is constant.

In [8] it was proved that a k-local c-approximate offline algorithm can be
easily converted to a k-local c-competitive online algorithm. Hence,

Corollary 1. There is a 1-local 17/12-competitive algorithm for multicoloring
hexagonal graphs.

In the next Section we formally define some basic terminology, while in Sec-
tion 3 we present the algorithm and prove Theorem 1.

2 Basic definition and useful facts

Following the notation from [3], the vertices of the triangular lattice T can be
described as follows: the position of each vertex is an integer linear combination
xp+yq of two vectors p = (1, 0) and q = (1

2 ,
√

3
2). Thus vertices of the triangular

lattice may be identified with pairs (x, y) of integers. Two vertices are adjacent
when the Euclidean distance between them is one. Therefore each vertex (x, y)
has six neighbors: (x−1, y), (x−1, y+1), (x, y+1), (x+1, y), (x+1, y−1), (x, y−1).
For simplicity we refer to the neighbors as: left, up-left, up-right, right, down-right
and down-left. We define a hexagonal graph G = (V,E) as an induced subgraph
of the triangular lattice (see Figure 1).

There exists an obvious 3-coloring of the infinite triangular lattice which
gives partition of the vertex set of any hexagonal graph into three independent
sets. Let us denote a color of any vertex v in this 3-coloring by bc(v) and call
it a base color (for simplicity we will use red, green and blue as base colors and
their arrangement is given in Figure 1), i.e. bc(v) ∈ {R,G,B}.

1-local 17/12-competitive Algorithm for Multicoloring Hexagonal Graphs 3

Fig. 1. An example of a hexagonal graph

We call a triangle-free hexagonal graph an induced subgraph of the triangular
lattice without 3-clique. We define a corner in a triangle-free hexagonal graph
as a vertex which has at least two neighbors and none of them are at angle π.
A vertex is a right corner if it has an up-right or a down-right neighbor, and
otherwise it is a left corner (see Figure 2). A vertex which is not a corner is
called a non-corner.

Fig. 2. All possibilities for: (a) - left corners, (b) - right corners

In graph G = (V,E), we call a coloring f : V → {1, . . . , k} k-good if for every
odd cycle in G and for every i, 1 ≤ i ≤ k, there is a vertex v ∈ V in the cycle
such that f(v) = i. A graph is k-good if such coloring exists.

Lemma 1. [4] Consider a 3-coloring of the triangular lattice (R,G,B). Every
odd cycle of the triangle-free hexagonal graph G contains at least one non-corner
vertex of every color.

Proof. Assume without loss of generality that there exists an odd cycle in the
graph which does not have a non-corner vertex colored red. Notice that in the
3-coloring of the triangular lattice, a corner has all its neighbors colored by the
same color (they are at the angle 2π/3 since the graph is triangle-free). Hence,
if all neighbors of a red colored corner are blue, we can recolor this corner

4 Rafa l Witkowski

by green color and vice-versa. That gives a valid 2-coloring of an odd cycle,
a contradiction. ut

Note that two successive corners in any cycle cannot be both left (right). By
Lemma 1 and since every cycle has at least one left and one right corner, we get
the following observation:

Proposition 1. Any triangle-free hexagonal graph G is 5-good.

One can also give an explicit 5-good coloring of every triangle-free hexagonal
graph by assigning colors in the following way:

– PINK – to non-corner vertices with base color equal to red,
– LIME – to non-corner vertices with base color equal to green,
– AQUA – to non-corner vertices with base color equal to blue,
– WHITE – to left corner vertices,
– YELLOW – to right corner vertices.

We denote color of a vertex v in this 5-good coloring by ec(v) and call it an extra
color of v (for simplicity we will use pink, lime, aqua, white and yellow as extra
colors, see Figure 3) , i.e. ec(v) ∈ {P,L,A,W, Y }.

Fig. 3. An example of a triangle-free hexagonal graph with 5-good coloring

Notice that if a graph G is 5-good then after removing vertices colored by any
of those five colors, the resulting graph is bipartite. For any weighted bipartite
graph H, χm(H) = ω(H) (see [6]), and it can be optimally multicolored by the
following procedure.

Procedure 2 Let H = (V ′, V ′′, E, d) be a weighted bipartite graph. We get an
optimal multicoloring of H if to each vertex v ∈ V ′ we assign a set of col-
ors {1, 2, . . . , d(v)}, while with each vertex v ∈ V ′′ we associate a set of colors
{m(v) + 1,m(v) + 2, . . . ,m(v) + d(v)}, where m(v) = max{d(u) : {u, v} ∈ E}.

1-local 17/12-competitive Algorithm for Multicoloring Hexagonal Graphs 5

Notice that in any weighted hexagonal graph G, a subgraph of the triangular
lattice T induced by vertices with positive demands d(v), the only cliques are
triangles, edges and isolated vertices. Note also that we assume that all vertices
of T which are not in G have to have demand d(v) = 0. Therefore, the weighted
clique number of G can be computed as follows:

ω(G) = max{d(u) + d(v) + d(t) : {u, v, t} ∈ τ(T)},

where τ(T) is the set of all triangles of T .
For each vertex v ∈ G, define base function κ as

κ(v) = max{a(v, u, t) : {v, u, t} ∈ τ(T)},

where a(u, v, t) = d(d(u) + d(v) + d(t))/3e, is an average weight of the triangle
{u, v, t} ∈ τ(T). It is easy to observe that the following fact holds.

Proposition 2. For each v ∈ G,

κ(v) ≤
⌈
ω(G)

3

⌉
We call vertex v heavy if d(v) > κ(v), otherwise we call it light. If d(v) > 2κ(v)

we call vertex very heavy.
To color vertices of G we use colors from appropriate palette. For a given color

c, its palette is defined as a set of pairs {(c, i)}i∈IN. A palette is called base color
palette if c ∈ {R,G,B}, while it is called extra color palette if c ∈ {P,L,A,W, Y }.

In our model of computations we assume that each vertex knows its coor-
dinates as well as its own demand (weight) and demands of all it neighbors.
With this knowledge, each vertex has to color itself properly in constant time in
a distributed way.

3 Algorithm and its correctness

Our algorithm consists of two main phases. In the first phase vertices take
κ(v) colors from its base color palette, so use no more than ω(G) colors. Af-
ter this phase all light vertices are fully colored while the remaining vertices
create a triangle-free hexagonal graph with weighted clique number not exceed-
ing dω(G)/3e (after technical removing very heavy vertices). In the second phase
we construct 5-good coloring of the remaining graph. Recall that in 5-good col-
oring, a graph is bipartite after removing vertices of any of these five colors. If
we use Procedure 2 and color such graphs optimally with weight function equal
in each vertex to 1/4 of its demands, then we would fully color the remaining
graph and use no more than 5/4 colors than it is needed. Due to the proof of
Lemma 1, bipartition is easy to find after removing any class of non-corners
(pink, aqua or lime vertices). Unfortunately we cannot obtain this bipartition in
our 1-local model of computation when we remove any class of corners (white
or yellow vertices). We can do it only for non-corners, while corners have to be
satisfied in a separate way – by using free colors from base color palettes.

More precisely, our algorithm consists of the following steps:

6 Rafa l Witkowski

Algorithm

Step 0 For each vertex v = (x, y) ∈ V compute its base color bc(v)

bc(v) =

R if x+ 2y mod 3 = 0
G if x+ 2y mod 3 = 1
B if x+ 2y mod 3 = 2

,

and its base function value

κ(v) = max
{⌈

d(u) + d(v) + d(t)
3

⌉
: {v, u, t} ∈ τ(T)

}
.

Step 1 For each vertex v ∈ V assign to v min{κ(v), d(v)} colors from its base
color palette. Construct a new weighted triangle-free hexagonal graph G1 =
(V1, E1, d1) where d1(v) = max{d(v)− κ(v), 0}, V1 ⊆ V is the set of vertices
with d1(v) > 0 (heavy vertices) and E1 ⊆ E is the set of all edges in G with
both endpoints from V1 (E1 is induced by V1).

Step 2 For each vertex v ∈ V1 with d1(v) > κ(v) (very heavy vertices) assign
free colors from the first κ(v) of base color palettes of its neighbors in T .
Construct a new graph G2 = (V2, E2, d2) where d2 is the difference between
d1(v) and the number of assigned colors in this Step, V2 ⊆ V1 is the set of
vertices with d2(v) > 0 and E2 ⊆ E1 is the set of all edges in G1 with both
endpoints from V2 (E2 is induced by V2).

Step 3 Determine 5-good coloring of G2: for each vertex v ∈ V2 compute its
extra color ec(v)

ec(v) =

P if v is non-corner in G2 and bc(v) = R
L if v is non-corner in G2 and bc(v) = G
A if v is non-corner in G2 and bc(v) = B
W if v is left corner in G2

Y if v is right corner in G2

Step 4 For each class of non-corners (pink, lime, aqua) do as follows: remove
from G2 all pink (lime, aqua) vertices and based on the proof of Lemma 1
find a bipartition of the remaining graph. Apply Procedure 2 to satisfy 1/4
demands in G2 by colors from pink (lime, aqua) extra color palette.

Step 5 For each class of corners (white, yellow) do as follows: remove from G2

all white (yellow) vertices and:

5a find a bipartition of non-corners using their positions in the triangular
lattice T and apply Procedure 2 to satisfy 1/4 demands in G2 by colors
from white (yellow) extra color palette.

5b for each corner satisfy 1/4 its demands in G2 by the free colors of first
κ(v) from base color palettes of its light neighbors in T .

1-local 17/12-competitive Algorithm for Multicoloring Hexagonal Graphs 7

Correctness proof

At the very beginning of the algorithm there is a 1-local communication when
each vertex finds out about the demands of all its neighbors. From now on, no
more communication will be needed. Recall that each vertex knows its position
(x, y) on the triangular lattice T .

In Step 0 there is nothing to prove.

In Step 1 each heavy vertex v assigns κ(v) colors from its base color palette, while
each light vertex u assigns d(u) colors from its base color palette. Note that G1

consists only of heavy vertices, therefore G1 is a triangle-free hexagonal graph.
For any {v, u, t} ∈ τ(G), since 3 min {κ(v), κ(u), κ(t)} ≥ d(v) + d(u) + d(t) and
min {κ(v), κ(u), κ(t)} ≥ min {d(v), d(u), d(t)}, at most two of d1(v), d1(u), d1(t)
are strictly positive and at least one of the vertices u, v and t has all its required
colors totally assigned in Step 1. Therefore, the graph G1 does not contain 3-
clique, i.e. it is a triangle-free hexagonal graph. The remaining weight of each
vertex v ∈ G1 is

d1(v) = d(v)− κ(v).

In Step 2 only vertices with d1(v) > κ(v) (very heavy vertices) are colored. If
vertex v is very heavy in G then it is isolated in G1 (all its neighbors are light
in G). Otherwise, for some {v, u, t} ∈ τ(T) we would have

d(v) + d(u) > 2κ(v) + κ(u) ≥ 3a(v, u, t) ≥ d(v) + d(u),

a contradiction. Without loss of generality we may assume that bc(v) = R.
Denote by

DG(v) = min{κ(v)− d(u) : {u, v} ∈ T, bc(u) = G},

DB(v) = min{κ(v)− d(u) : {u, v} ∈ T, bc(u) = B}.
Obviously, DG(v), DB(v) > 0 for very heavy vertices v ∈ G1. Since in Step 1
each light vertex t uses exactly d(t) colors from its base color palette, we have at
least DG(v) free colors from the green base color palette and at least DB(v) free
colors from the blue base color palette, so that vertex v can assign those colors
to itself. Then, we would have G2 with ω(G2) ≤ dω(G)/3e. To prove it, we will
need the following lemma:

Lemma 2. In G1 for every edge {v, u} ∈ E1 holds:

d1(v) + d1(u) ≤ κ(v), d1(u) + d1(v) ≤ κ(u).

Proof. Assume that v and u are heavy vertices in G and d1(v) + d1(u) > κ(v).
Then for some {v, u, t} ∈ τ(T) we have:

d(v)+d(u) = d1(v)+κ(v)+d1(u)+κ(u) > 2κ(v)+κ(u) ≥ 3a(u, v, t) ≥ d(u)+d(v),

again a contradiction. ut

8 Rafa l Witkowski

Proposition 3.
ω(G2) ≤ dω(G)/3e.

Proof. Recall that in a hexagonal graph the only cliques are triangles, edges and
isolated vertices. Since G1 is a triangle-free hexagonal graph, G2 also does not
contain any triangle, so we have only edges and isolated vertices to check.

For each edge {v, u} ∈ E2 from Lemma 2 and Proposition 2 we have:

d2(v) + d2(u) ≤ d1(v) + d1(u) ≤ κ(v) ≤ dω(G)/3e.

For each isolated vertex v ∈ G2 we should have d2(v) ≤ dω(G)/3e. Indeed, if
d2(v) ≤ κ(v), then it holds by Proposition 2. If d2(v) > κ(v), then d1(v) > κ(v),
so v has to borrow colors from its neighbors’ base color palettes in Step 2. Then,
for bc(v) = R,

d2(v) = d1(v)−DG(v)−DB(v) ≤ d(v)− κ(v)− κ(v) + d(u)− κ(v) + d(t) ≤

≤ 3a(v, u, t)− 3κ(v) ≤ 0

for some {v, u, t} ∈ τ(T). Hence, d2(v) ≤ dω(G)/3e, and so ω(G2) ≤ dω(G)/3e.
ut

In Step 3 each vertex v has to decide whether it is a corner in G2 or not. Only
heavy neighbors of v can still exist in G2. Unfortunately, in 1-local model v does
not know which of his neighbors are heavy (and still exist in G2) and which
are light. Vertex v knows only where its neighbors with d(u) ≤ max{a(v, u, t) :
{v, u, t} ∈ τ(T)} are located. We call those vertices slight neighbors of v. They
must be light and, so, they are fully colored in Step 1. Thus, v knows where it
cannot have neighbors in G2 and presumes that all its neighbors which are not
slight, still exist in G2. Based on that knowledge, it can decide whether it is
a corner or not. In each triangle in τ(T) containing v at least one neighbor of v
is slight, so v has at least three such neighbors. If vertex v has more than four
slight neighbors, then it is a non-corner. If vertex v has four slight neighbors,
then the remaining two are not slight. In this case if an angle between those two
are π, then v is non-corner, otherwise it is a corner – a right corner if its down-
left, up-left and right neighbors are slight, and a left corner if its down-right,
up-right and left neighbors are slight. If vertex v has three slight neighbors, then
it is a corner and distinction between left and right is determined in the same
way as above.

Step 4 strictly depends on a 5-good coloring of graph G2 (function ec). For
simplicity, consider only graph GP = (VP , EP , dd2/4e) where VP is obtained
from V2 by removing pink vertices, EP ⊆ E2 is the set of edges of G2 with both
endpoints in VP and weight function is 1/4 of weight function in G2. (Similarly
we can define GL for lime vertices and GA for aqua vertices and the analysis is
identical.) Since for GP we remove pink vertices from G2, therefore by Lemma 1,
graph GP is bipartite. We can easily find bipartition of this graph using base
colors (function bc): we put to the first set of the bipartition all non-corners

1-local 17/12-competitive Algorithm for Multicoloring Hexagonal Graphs 9

with base color equal to blue and red corners for which all neighbors in G2

are green; while to the second set we put all non-corners with base color equal
to green and red corners for which all neighbors in G2 are blue. Next, we can
apply Procedure 2 to GP with bipartition defined above and weight function
on each vertex v equal to dd2(v)/4e, assigning colors from the pink extra color
palette. The problem is that, under 1-locality assumption, vertices cannot cal-
culate value of d2 of the neighbors, which is needed in Procedure 2 to calculate
value m(v) = max{dd2(u)/4e : {u, v} ∈ E2}. However, we can replace d2(u) by
dv2(u), which is the number of expected demands on vertex u in vertex v after
Step 2, and take m′(v) = max{ddv2(u)/4e : {u, v} ∈ E2}. More precisely,

dv2(u) = d(u)−max{a(u, v, t) : {u, v, t} ∈ τ(T)}

Note that dv2(u) ≥ d2(u) for any {u, v} ∈ E2. However, for every {v, u} ∈ E2 we
have

d2(v) + dv2(u) ≤ κ(v).

Assume that this inequality does not hold. Denote by

b(u, v) = max{a(u, v, t) : {u, v, t} ∈ τ(T)}.

Then for some {t, v, u} ∈ τ(T) we have:

d(v) + d(u) = d2(v) + κ(v) + dv2(u) + b(u, v) > 2κ(v) + b(u, v) ≥

≥ 3a(u, v, t) ≥ d(u) + d(v),

a contradiction. Hence, if we use dv2 instead of d2 in each vertex from the second
set of our bipartition, we have new ω(G2) and inequality from Proposition 3 still
holds. Thus, Procedure 2 works and uses at most dω(G2)/4e colors in GP .

In Steps 5 and 5a we proceed almost in the same way. For simplicity, consider
only graph GW = (VW , EW , dd2/4e) where VW is obtained from V2 by removing
white vertices, EW ⊆ E2 is the set of edges from G2 with both endpoints in
VW and the weight function is 1/4 of the weight function in G2. (Similarly we
can define GY for yellow vertices and the analysis is identical.) Since we take
G2 without white vertices, in GW there are not any left corners and we have
only right corners and non-corners. In 5a we apply Procedure 2 to non-corners
and assign colors from the white extra color palette. We find a bipartition using
parity function p on each vertex. Parity is a function which calculates whether
v = (x, y) is ”even” or ”odd” vertex on the line to which it belongs. Formally:

– if v has up-left, up-right, down-left, down-right slight neighbors then

p(v) = x mod 2

– if v has left, up-left, right, down-right slight neighbors then

p(v) = y mod 2

10 Rafa l Witkowski

– if v has left, down-left, right, up-right slight neighbors then

p(v) = y mod 2

In Step 5b for GW we take right corners and go back for a while to the base
color palettes. If vertex v ∈ G2 is a corner, it means that it has three slight
neighbors with the same base color. Without loss of generality, assume that
bc(v) = R and its slight neighbors’ base color is blue. Recall function DB from
Step 2 – we have DB(v) free colors from blue base color palette. We should have
d2(v) ≤ DB(v). Let ∆ = {u, v, t} ∈ τ(T) be a triangle such that t is the green
vertex which is not slight neighbor of v, and u is the blue vertex which is a slight
neighbor of v. Denote by s∆(t) = d(t)− a(u, v, t). Then we have

0 ≥ d(v)− a(u, v, t) + d(t)− a(u, v, t) + d(u)− a(u, v, t) ≥

≥ d(v)− κ(v) + s∆(t) + d(u)− κ(v) ≥ d1(v) + s∆(t)−DB(v) ≥

≥ d2(v) + s∆(t)−DB(v)

Since t is not a slight neighbor of v, d2(v) < DB(v). Therefore, vertex v has as
much as d2(v) free colors from the blue base color palette at his disposal, while
it needs just dd2(v)/4e.

In both rounds of Step 5b (white and yellow vertices) we do the same for
every right and left corners. We have to be careful not to cause a conflict when
some right and left corners are adjacent in G2. Then we cannot use the same
color from the base colors palette from common slight neighbors. To ensure that,
for left corners we can take only ”even colors” and for right corners only ”odd
colors” from the base color palettes (recall that we think of colors in a palette
as integers). We can do this because we have four times more free colors than
we need in each corner, and two times more than may be needed for any two
adjacent corners.

During Steps 4 and 5 each vertex v participates in exactly four from five
rounds (in each round one extra color is removed from G2) and dd2(v)/4e colors
are assigned in each. Therefore, at the end, all demands are satisfied.

Ratio

We claim that during the first phase (Steps 1 and 2) our algorithm uses at most
ω(G) + 3 colors. To see this notice that in Step 1 each vertex v uses at most
κ(v) colors from its base color palette and, by Proposition 2 and the fact that
there are three base colors, we know that no more than 3 dω(G)/3e ≤ ω(G) + 3
colors are used. Note also that in Step 2 we use only those colors from base color
palettes which have not been used in Step 1, so overall no more than ω(G) + 3
colors are used in total in the first phase.
To count the number of colors used in the second phase (Steps 4 and 5) notice
that we divide the demands of each vertex in G2 into four equal parts. Each
vertex v participates in four from five rounds and assigns dd2(v)/4e colors in

1-local 17/12-competitive Algorithm for Multicoloring Hexagonal Graphs 11

each round. Since in each round of Step 4 and 5a we use ω(G2)/4 + 2 colors
from extra color palettes, we use only 5(ω(G2)/4 + 2) colors in total, while in
5b, when vertex cannot use an extra color palette, it borrows some colors from
the base color palettes of its neighbors that have not been used by them in the
previous steps, in order to avoid an introduction of any new colors.
Let A(G) denote the number of colors used by our algorithm for the graph G.
Thus, since ω(G2) ≤ dω(G)/3e ≤ ω(G)/3 + 1, the total number of colors used
by our algorithm is at most

A(G) ≤ ω(G)+3+5
(
ω(G2)

4
+ 2
)
≤ ω(G)+3+

5ω(G)
12

+
5
4

+10 ≤ 17
12
ω(G)+15.

So, the performance ratio for our strategy is 17/12 and we arrived at the
thesis of Theorem 1.

4 Conclusion

We have given a 17/12-approximation algorithm for multicoloring hexagonal
graphs. This implies a 17/12-competitive solution for the online frequency allo-
cation problem, which involves servicing calls in each cell in a cellular network.
The distributed algorithm is practical in the sense that frequency allocation for
each base station is done locally, based on the information about itself and its
neighbors only, and the time complexity is constant.

References

1. Chin, F.Y.L., Zhang, Y., Zhu H.: A 1-local 13/9-competitive Algorithm for Multi-
coloring Hexagonal Graphs, The 13th Annual International Computing and Combi-
natorics Conference COCOON 2007, LNCS, vol. 4598/2007, pp 526-536, Springer,
Heidelberg (2007) .

2. Sparl, P., Zerovnik, J.: 2-local 4/3-competitive Algorithm for Multicoloring Hexag-
onal Graphs, Journal of Algorithms, vol. 55(1), pp 29-41 (2005)

3. McDiarmid, C., Reed, B.: Channel assignment and weighted coloring, Networks,
vol. 36(2), pp. 114-117 (2000)

4. Sudeep, K.S., Vishwanathan, S.: A technique for multicoloring triangle-free hexag-
onal graphs, Discrete Mathematics, vol. 300, pp. 256-259 (2005)

5. Narayanan, L.: Channel assignment and graph multicoloring, Handbook of wireless
networks and mobile computing, pp 71-94, Wiley, New York, (2002)

6. Narayanan, L., Shende, S.M.: Static frequency assignment in cellular networks,
Algorithmica, vol. 29(3), pp 396-409 (2001)

7. Hale, W.K.: Frequency assignment: theory and applications, Proceedings of the
IEEE, vol 68(12), pp 1497-1514 (1980)

8. Janssen, J., Krizanc, D., Narayanan, L., Shende, S.: Distributed Online Frequency
Assignment in Cellular Network, Journal of Algorithms, vol. 36(2), pp 119-151
(2000)

9. Havet, F.: Channel assignment and multicoloring of the induced subgraphs of the
triangular lattice, Discrete Mathematics, vol. 233, pp 219-231 (2001)

12 Rafa l Witkowski

10. Sparl, P., Zerovnik, J.: 2-local 5/4-competitive algorithm for multicoloring triangle-
free hexagonal graphs, Information Processing Letters, vol. 90(5), pp 239-246
(2004)

11. Zerownik, J.: A distributed 6/5-competitive algorithm for multicoloring triangle-
free hexagonal graphs, International Journal of Pure and Applied Mathematics,
vol. 23(2), pp 141-156 (2005)

