
1-local 4/3-competitive Algorithm for Multicoloring a Subclass

of Hexagonal Graphs

Rafa l Witkowski∗

Adam Mickiewicz University,
Faculty of Mathematics and Computer Science,

Poznań, Poland
rmiw@amu.edu.pl

February 27, 2010

Abstract

In the frequency allocation problem we are given a cellular telephone network whose
geographical coverage area is divided into cells where phone calls are serviced by fre-
quencies assigned to them, so that none of the pairs of calls emanating from the same or
neighboring cells is assigned the same frequency. The problem is to use the frequencies
efficiently, i.e. minimize the span of used frequencies. The frequency allocation problem
can be regarded as a multicoloring problem on a weighted hexagonal graph. In this
paper we present a 1-local 4/3-competitive distributed algorithm for multicoloring a
hexagonal graph without certain forbidden configuration (introduced in [7]). Its ex-
tension is also a new version of 2-local 4/3-competitive algorithm for multicoloring a
general case hexagonal graphs.

1 Introduction

The basic problem concerning cellular networks concentrates on assigning sets of frequencies
(colors) to transmitters (vertices) in order to avoid unacceptable interference (see [1]). In
an ordinary cellular model the transmitters are centers of hexagonal cells and the corre-
sponding adjacency graph is a subgraph of the infinite triangular lattice. In our model to
each vertex v of a the triangular lattice T we assign a non-negative integer d(v), called the
demand (or weight) of the vertex v. A proper multicoloring of G is a mapping ϕ from V (G)
to subsets of integers (colors) [n] = {1, 2, . . . , n}, such that |ϕ(v)| = d(v) for any vertex
v ∈ G and ϕ(v) ∩ ϕ(u) = ∅ for any pair of adjacent vertices u and v in the graph G. The

∗This work was supported by grant N206 017 32/2452 for years 2007-2010

1



minimal n for which there exists a proper multicoloring of G, denoted by χm(G), is called
the multichromatic number of G.

In studies concerning cellular networks arise naturally the idea of hexagonal graphs. For-
mally, following the notation from [3], the vertices of the triangular lattice T can be described
as follows: the position of each vertex is an integer linear combination x~p+ y~q of two vec-
tors ~p = (1, 0) and ~q = (1

2 ,
√

3
2 ). Thus vertices of the triangular lattice may be identified

with pairs (x, y) of integers. Two vertices are adjacent when the Euclidean distance between
them is one. Therefore each vertex (x, y) has six neighbors: (x−1, y), (x−1, y+1), (x, y+1),
(x+ 1, y), (x+ 1, y − 1), (x, y − 1). For simplicity we refer to the neighbors as: left, up-left,
up-right, right, down-right and down-left. We define a hexagonal graph G = (V,E) as an
induced subgraph of the triangular lattice (see Figure 1).

Figure 1: An example of a hexagonal graph

A triangle-free hexagonal graph is a subgraph of the triangular lattice which does not contain
any 3-clique. A corner in a triangle-free hexagonal graph is a vertex which has at least two
neighbors which are adjacent to it at angle different than π. A vertex which is not a corner
is called a non-corner (see Figure 2).

Figure 2: All possibilities for: (a) - corners, (b) - non-corners

The multichromatic number is closely related to the weighted clique number ω(G), which
is defined as the maximum over all cliques of G of their weights, where the weight of a
clique is the sum of demands on its vertices. Obviously, for any graph, χm(G) ≥ ω(G),
while for hexagonal graphs, χm(G) ≤

⌈
4ω(G)

3

⌉
+ O(1) (see, for example, [3], [5], [6]). Since

all proofs of the upper bound are constructive, therefore it implies the existence of a 4/3-
competitive algorithm, i.e. algorithms which can online serve calls with the approximation

2



ratio equal to 4/3 respectively to the weighted clique number (see [2], [4]). It should be also
mentioned, that McDiarmid and Reed showed in [3] that to decide whether χm(G) = ω(G)
is NP-complete.

In distributed graph algorithms a special role plays their ”locality” property. An algorithm
is k-local if the computation at any vertex v uses only the information about the demands
of vertices at distance at most k from v. For hexagonal graphs the best known 1-local
algorithm for multicoloring is 7/5-competitive, and it has been presented in [9].

In this paper we develop a new algorithm with ratio 4/3, which is 1-local for hexagonal
graphs in which we exclude two adjacent heavy corners in triangle-free graph induced by
heavy vertices (vertex is heavy if its weight is larger than average weights of all clique which
contain this vertex) and its coordinates (x1, y1), (x1, y1) satisfy x1 mod 2 6= y1 mod 2 and
x2 mod 2 6= y2 mod 2 (see Figure 3). We call such subgraph special heavy double-corner.

Figure 3: All possibilities for two horizontal adjacent corners (special heavy double-corner)

Triangle-free hexagonal graphs without two adjacent corners (heavy double-corners) were
introduced in [7]. Here we consider a wider subclass of hexagonals than in [7] since we
exclude two adjacent corners in one specific position only.

Our algorithm can be extended into 2-local model of computation to multicolor general case
hexagonal graph with the same 4/3 ratio, as the best known 2-local algorithm proposed by
Šparl and Žerovnik (see [6]) (Proof is in Appendix A).

We will prove the following theorem:

Theorem 1.1. There is a 1-local distributed approximation algorithm for multicoloring
hexagonal graphs without a special heavy double-corner which uses at most

⌈
4
3ω(G)

⌉
+O(1)

colors. Time complexity of the algorithm at each vertex is constant.

In [2] it was proved that a k-local c-approximate algorithm can be easily converted to a
k-local c-competitive algorithm. Hence,

Corollary 1.2. There is a 1-local 4/3-competitive algorithm for multicoloring hexagonal
graphs without a special heavy double-corner.

In the next Section we formally define some basic terminology while in Section 3 we present
algorithm for multicoloring hexagonal graphs without a special heavy double-corner in 1-
local model of computation. In this way we prove Theorems 1.1.

3



2 Basic definition and useful facts

There exists an obvious 3-coloring of the infinite triangular lattice which gives the partition
of the vertex set of any hexagonal graph into three independent sets. Let us denote a color
of any vertex v in this 3-coloring by bc(v) and call it a base color (for simplicity we will
use red, green and blue as base colors and their arrangement is given in Figure 1), i.e.
bc(v) ∈ {R,G,B}.

Notice that in any weighted hexagonal graph G, a subgraph of the triangular lattice T
induced by vertices with positive demands d(v), the only cliques are triangles, edges and
isolated vertices. Note also that we assume that all vertices of T which are not in G have
to have demand d(v) = 0. Therefore, the weighted clique number of G can be computed as
follows:

ω(G) = max{d(u) + d(v) + d(t) : {u, v, t} ∈ τ(T )},

where τ(T ) is the set of all triangles of T .

For each vertex v ∈ G, define base function κ as

κ(v) = max{a(v, u, t) : {v, u, t} ∈ τ(T )},

where a(u, v, t) = d(d(u)+d(v)+d(t))/3e, is an average weight of the triangle {u, v, t} ∈ τ(T ).
It is easy to observe that the following fact holds.

Fact 2.1. For each v ∈ G,

κ(v) ≤
⌈
ω(G)

3

⌉
We call vertex v heavy if d(v) > κ(v), otherwise we call it light. If d(v) > 2κ(v) we call
vertex very heavy.

From [5] we know that for any weighted bipartite graph H, χm(H) = ω(H), and it can be
optimally multicolored by the following procedure:

Procedure 2.2. Let H = (V ′, V ′′, E, d) be a weighted bipartite graph. We get an optimal
multicoloring of H if to each vertex v ∈ V ′ we assign a set of colors {1, 2, . . . , d(v)}, while
with each vertex v ∈ V ′′ we associate a set of colors {m(v) + 1,m(v) + 2, . . . ,m(v) + d(v)},
where m(v) = max{d(u) : {u, v} ∈ E}.

To color vertices of G we use colors from appropriate palette. For a given base color c, its
palette is defined as a set of pairs {(c, i)}i∈N, c ∈ {R,G,B}. Such palettes are called base
color palette. We will also use extra color palette, (c = X). In our algorithm we will use
colors from each palette for i ∈ {1, . . . , dω(G)/3e}. Notice that palettes are equal, so we
can tranlate them to numbers in the following way:

• red base color palette: {4i : i = 1, . . . , dω(G)/3e}

4



• green base color palette: {4i− 1 : i = 1, . . . , dω(G)/3e}

• blue base color palette: {4i− 2 : i = 1, . . . , dω(G)/3e}

• extra color palette: {4i− 3 : i = 1, . . . , dω(G)/3e}

Since we are not use any other colors, our algorithm assign no more then 4
3ω(G) + 4.

In our model of computations we assume that each vertex knows its coordinates as well as
its own demand (weight) and demands of all it neighbors in distance k (k-local model). In
the next Section we present 1-local algorithm for multicoloring hexagonal graphs without a
special heavy double-corner.

3 1-local algorithm for subclass of hexagonals

Our algorithm consists of three main phases. In the first phase vertices take κ(v) colors
from its base color palette, so use no more than ω(G) colors. After this phase all light
vertices are fully colored while the remaining vertices create a triangle-free hexagonal graph
with weighted clique number not exceeding dω(G)/3e (after technical removing very heavy
vertices). In the second phase we construct bipartite subgraph of the remaining graph,
which is induced by all vertices except some corners. We use Procedure 2.2 and color such
graph optimally by using colors from extra color palette. In the third phase we color isolated
vertices in remaining graph by using free colors from base color palettes. Since we assumed
G is free from a special heavy double-corner, after this phase whole graph is fully properly
multicolored.

More precisely, our algorithm consists of the following steps:

Algorithm

Step 0 For each vertex v = (x, y) ∈ V compute its base color bc(v)

bc(v) =


R if x+ 2y mod 3 = 0
G if x+ 2y mod 3 = 1
B if x+ 2y mod 3 = 2

,

and its base function value

κ(v) = max
{⌈

d(u) + d(v) + d(t)
3

⌉
: {v, u, t} ∈ τ(T )

}
.

Step 1 For each vertex v ∈ V assign to v first min{κ(v), d(v)} colors from its base color
palette. Construct a new weighted triangle-free hexagonal graph G1 = (V1, E1, d1)
where d1(v) = max{d(v) − κ(v), 0}, V1 ⊆ V is the set of vertices with d1(v) > 0

5



(heavy vertices) and E1 ⊆ E is the set of all edges in G with both endpoints from V1

(E1 is induced by V1).

Step 2 For each vertex v ∈ V1 with d1(v) > κ(v) (very heavy vertices) assign first κ(v) free
colors from extra color palette and free colors from the base color palettes of its right
neighbors in T . Construct a new graph G2 = (V2, E2, d2) where d2 is the difference
between d1(v) and the number of assigned colors in this Step, V2 ⊆ V1 is the set of
vertices with d2(v) > 0 and E2 ⊆ E1 is the set of all edges in G1 with both endpoints
from V2 (E2 is induced by V2).

Step 3 Determine the value of the following function p on vertices of G2:

• if v = (x, y) is a non-corner:

– if v has up-left or down-right neighbors in G2 then p(v) = x mod 2
– if v has up-right or down-left neighbors in G2 then p(v) = y mod 2
– if v has left or right neighbors in G2 then p(v) = x mod 2

• if v = (x, y) is a corner:

– if x mod 2 = y mod 2 then p(v) = y mod 2
– if x mod 2 6= y mod 2 then p(v) = 2

Step 4 Apply Procedure 2.2 to bipartite graph induced by all vertices from G2 with p(v) ∈
{0, 1} to satisfy all demands in G2 by colors from extra color palette. Construct a
new graph G3 = (V3, E3, d3), collection of isolated vertices, where d3 = d2 is the same
as in G2, V3 ⊆ V2 is the set of vertices with p(v) = 2 and E3 is an empty set since E3

is induced by V3.

Step 5 Color all isolated vertices in G3 using free colors from the base color palettes of its
neighbors in T .

Correctness proof

At the very beginning of the algorithm there is a 1-local communication when each vertex
finds out about the demands of all its neighbors. From now on, no more communication
will be needed. Recall that each vertex knows its position (x, y) on the triangular lattice T .

In Step 0 there is nothing to prove.

In Step 1 each heavy vertex v assigns κ(v) colors from its base color palette, while each light
vertex u assigns d(u) colors from its base color palette. Note that G1 consists only of heavy
vertices, therefore G1 is a triangle-free hexagonal graph. For any {v, u, t} ∈ τ(G), since
3 min {κ(v), κ(u), κ(t)} ≥ d(v)+d(u)+d(t) and min {κ(v), κ(u), κ(t)} ≥ min {d(v), d(u), d(t)},
at most two of d1(v), d1(u), d1(t) are strictly positive and at least one of the vertices u, v

6



and t has all its required colors totally assigned in Step 1. Therefore, the graph G1 does
not contain 3-clique, i.e. it is a triangle-free hexagonal graph. The remaining weight of each
vertex v ∈ G1 is

d1(v) = d(v)− κ(v).

In Step 2 only vertices with d1(v) > κ(v) (very heavy vertices) are colored. If vertex v is
very heavy in G then it is isolated in G1 (all its neighbors are light in G). Otherwise, for
some {v, u, t} ∈ τ(T ) we would have

d(v) + d(u) > 2κ(v) + κ(u) ≥ 3a(v, u, t) ≥ d(v) + d(u),

a contradiction. Without loss of generality we may assume that bc(v) = R and its right
neighbor is blue. Denote by

DB(v) = min{κ(v)− d(u) : {u, v} ∈ T, bc(u) = B},

the number of free colors from blue base color palette. Obviously, DB(v) > 0 for very heavy
vertices v ∈ G1. Since in Step 1 each light vertex t uses exactly d(t) colors from its base
color palette, we have at least DB(v) free colors from the blue base color palette, so that
vertex v can assign those colors to itself. After that it can take all κ(v) colors from extra
color palette. Then, we would have G2 with ω(G2) ≤ dω(G)/3e. To prove it, we will need
the following lemma:

Lemma 3.1. In G1 for every edge {v, u} ∈ E1 holds:

d1(v) + d1(u) ≤ κ(v), d1(u) + d1(v) ≤ κ(u).

Proof. Assume that v and u are adjacent heavy vertices in G and d1(v) + d1(u) > κ(v).
Then for some {v, u, t} ∈ τ(T ) we have:

d(v) + d(u) = d1(v) + κ(v) + d1(u) + κ(u) > 2κ(v) + κ(u) ≥ 3a(u, v, t) ≥ d(u) + d(v),

a contradiction.

Fact 3.2.
ω(G2) ≤ dω(G)/3e.

Proof. Recall that in hexagonal graph the only cliques are triangles, edges and isolated
vertices. Since G1 is a triangle-free hexagonal graph, G2 also does not contain any triangle,
so we have only edges and isolated vertices to check.

For each edge {v, u} ∈ E2 from Lemma 3.1 and Fact 2.1 we have:

d2(v) + d2(u) ≤ d1(v) + d1(u) ≤ κ(v) ≤ dω(G)/3e.

For each isolated vertex v ∈ G2 we also should have d2(v) ≤ dω(G)/3e. Indeed, if d2(v) ≤
κ(v), then it holds by Fact 2.1. If d2(v) > κ(v), then d1(v) > κ(v), so in Step 2 vertex v has

7



to assign κ(v) colors from extra color palette and take colors from its right neighbor’s base
color palette. Then, for bc(v) = R, and its right neighbors with base color equal to blue:

d2(v) = d1(v)− κ(v)−DB(v) ≤ d(v)− κ(v)− κ(v)− κ(v) + d(u) ≤ d(v) + d(u)− 3κ(v) ≤ 0

for some {v, u} ∈ T , bc(u) = B. Hence, d2(v) ≤ dω(G)/3e, and so ω(G2) ≤ dω(G)/3e.

Notice that in proof of Lemma 3.2 we showed that in G2 we don’t have very heavy vertices
at all.

In Step 3 each vertex v has to decide whether it is a corner or not, and where are lo-
cated heavy neighbors of v. In 1-local model v does not know which of his neighbors are
heavy (and still exist in G2) and which are light. Vertex v knows only where its neighbors
with d(u) ≤ max{a(v, u, t) : {v, u, t} ∈ τ(T )} are located. We call those vertices slight
neighbors of v. Slight neighbors of v must be light and, so, they are fully colored in Step
1. Thus, v knows where it cannot have neighbors in G2 and presumes that all its neighbors
which are not slight, still exist in G2. Based on that knowledge, it can decide whether it is
a corner or not. In each triangle in τ(T ) containing v at least one neighbor of v is slight, so
v has at least three such neighbors. If vertex v has more than four slight neighbors, then it
is a non-corner. If vertex v has four slight neighbors, then the remaining two are not slight.
In this case if an angle between those two is π, then v is non-corner, otherwise it is a corner.
If vertex v has exactly three slight neighbors, then it is a corner.

In Step 4 we would like to apply Procedure 2.2 to graph induced on G2 by all vertices
with p(v) ∈ {0, 1}. It is easy to see that such graph is bipartite. For non-corners we use
coordinates to find out if vertex is ”odd” or ”even” on some ”line”, while for corners we
take only those with the same parity in all directions. The only problem is that, under 1-
locality assumption, vertices cannot calculate value of d2 of the neighbors, which is needed
in Procedure 2.2 to calculate value m(v) = max{dd2(u)e : {u, v} ∈ E2}. However, we can
replace d2(u) by dv

2(u), which is the number of expected remaining demands on vertex u in
vertex v after Step 2, and take m′(v) = max{ddv

2(u)e : {u, v} ∈ E2}. More precisely,

dv
2(u) = d(u)−max{a(u, v, t) : {u, v, t} ∈ τ(T )}

Note that dv
2(u) ≥ d2(u) for any {u, v} ∈ E2. However, for every {v, u} ∈ E2 we have

d2(v) + dv
2(u) ≤ κ(v).

Assume that this inequality does not hold. Denote by

b(u, v) = max{a(u, v, t) : {u, v, t} ∈ τ(T )}.

Then, for some {t, v, u} ∈ τ(T ), we have:

d(v) + d(u) = d2(v) + κ(v) + dv
2(u) + b(u, v) > 2κ(v) + b(u, v) ≥ 3a(u, v, t) ≥ d(u) + d(v),

8



a contradiction. Hence, if we use dv
2 instead of d2 in each vertex from the second set of our

bipartition, Procedure 2.2 works and uses at most dω(G)/3e colors, which is not greater
than size of extra color palette. We don’t create conflicts with colors from extra color
palette assigned in previous Steps. Only isolated vertices in G1 in Step 2 put some colors
from extra color palette, but they cannot be adjacent to any vertices in G2 since they are
isolated.

After coloring vertices with p(v) ∈ {0, 1}, only corners from G2 with p(v) = 2 remain
and they induce a new graph G3. If a corner in G2 is surrounded by non-corners then it
is isolated vertex in G3. If a corner is adjacent to some other corner in G2 then they must
form one of the three situation given in Figure 3.

Figure 4: All possibilities for adjacent corners in G2 (with coordinates mod 2)

Notice that in situation (a) and (b) from Figure 4, corner v with p(v) = 2 has always its
corner neighbor u with p(u) ∈ {0, 1}. Indeed, while v = (x, y), x mod 2 6= y mod 2 and in u
we change one coordinate by 1, then p(u) 6= 2. In situation (c) we change both coordinates
by 1, so in this case p(u) = 2. Hence, after coloring bipartite graph only the configuration
from Figure 4 (c) can survive in G3, but this is a special heavy double-corner which is
forbidden in graph G. Hence G3 is a collection of isolated vertices only.

In Step 5 we consider an isolated vertex v ∈ G3 and return to base color palettes. Vertex v
has three slight neighbors with the same base color. Without loss of generality, assume that
bc(v) = R and its slight neighbors’ base color is blue. From definition of function DB we
have DB(v) free colors from blue base color palette. We have to show that d3(v) ≤ DB(v).
Let ∆ = {u, v, t} ∈ τ(T ) be a triangle such that t is a green vertex which is heavy neighbor
of v, and u is a blue vertex which is a light neighbor of v. Denote by s∆(t) = d(t)−a(u, v, t).
Then we have

0 ≥ d(v)−a(u, v, t)+d(t)−a(u, v, t)+d(u)−a(u, v, t) ≥ d(v)−κ(v)+s∆(t)+d(u)−κ(v) ≥

≥ d1(v) + s∆(t)−DB(v) ≥ d2(v) + s∆(t)−DB(v) = d3(v) + s∆(t)−DB(v)

Since t is a heavy neighbor of v, therefore d3(v) < DB(v). Hence, vertex v has as much as
d3(v) free colors from the blue base color palette at his disposal.

After Step 5, all demands are satisfied in proper way and we use only colors from our
palettes. Hence we arrived at the thesis of Theorem 1.1.

9



4 Conclusion and Open Problem

We have given a 1-local 4/3-approximation algorithm for multicoloring hexagonal graphs
without a special heavy double-corner, subclass of hexagonals with condition introduced in
[7].

Notice that in 1-local model of computation for general case hexagonal graphs we are unable
to predict if graph contains a special heavy double-corner. If vertex want to check while it
is a part of a special heavy double-corner or not, it has to obtain which neighbors of its non
slight neighbors are slight, so it is forced to use 2-local communication. Therefore in general
case vertices in our 1-local algorithm cannot decide itself if they need more communication
to color properly. The open problem is to find such 1-local 4/3-competitive algorithm for
some subclass of hexagonal graphs which would know in 1-local model if it can or cannot
obtain proper multicoloring for whole graph.

References

[1] Hale, W.K.: Frequency assignment: theory and applications, Proceedings of the IEEE,
vol 68(12), pp 1497-1514 (1980)

[2] Janssen, J., Krizanc, D., Narayanan, L., Shende, S.: Distributed Online Frequency
Assignment in Cellular Network, Journal of Algorithms, vol. 36(2), pp 119-151 (2000)

[3] McDiarmid, C., Reed, B.: Channel assignment and weighted coloring, Networks, vol.
36(2), pp. 114-117 (2000)

[4] Narayanan, L.: Channel assignment and graph multicoloring, Handbook of wireless
networks and mobile computing, pp 71-94, Wiley, New York, (2002)

[5] Narayanan, L., Shende, S.M.: Static frequency assignment in cellular networks, Algo-
rithmica, vol. 29(3), pp 396-409 (2001)

[6] Šparl, P., Žerovnik, J.: 2-local 4/3-competitive Algorithm for Multicoloring Hexagonal
Graphs, Journal of Algorithms, vol. 55(1), pp 29-41 (2005)

[7] Šparl, P., Žerovnik, J.: 2-local 7/6-competitive algorithm for multicoloring a sub-class
of hexagonal graphs, International Journal of Computer Mathematics, to appear

[8] Witkowski, R. A 1-local 17/12-competitive Algorithm for Multicoloring Hexagonal
Graphs, Lecture Notes of Computer Science, vol. 5699/2009, pp 346-356 (2009)

[9] Witkowski, R., Žerovnik, J. 1-local 7/5-competitive Algorithm for Multicoloring Hexag-
onal Graphs, International Symposium on Combinatorial Optimization, 2010, accepted.

10



A 2-local version of algorithm for general case hexagonals

In this Appendix we will prove in different way than in [6] that:

Theorem A.1. There is a 2-local distributed approximation algorithm for multicoloring
hexagonal graphs which uses at most

⌈
4
3ω(G)

⌉
+O(1) colors. Time complexity of the algo-

rithm at each vertex is constant.

Since in [2] it was proved that a k-local c-approximate algorithm can be easily converted to
a k-local c-competitive algorithm, we have,

Corollary A.2. There is a 2-local 4/3-competitive algorithm for multicoloring general case
hexagonal graphs.

Assume that we deal with general case hexagonal graphs. Then adding two additional steps
to the algorithm from Section 3, we get a 2-local 4/3-competitive algorithm for multicoloring
general case hexagonal graphs. Those two steps are given below:

Step 6 For each isolated edge {v, u} ∈ G3 (v is left neighbor of u), to vertices v and u
assign colors from its slight neighbors base color palette in the following way:

• to v assign colors from interval {κ(v)− d3(v) + 1, . . . , κ(v)},
• to u assign colors from interval {a(u, v, r)−d3(v)−d3(u)+1, . . . , a(u, v, r)−d3(v)}

where r is the common slight neighbor of v and u with larger value of demand in G.

Step 7 For u, v, r as in Step 6, let s be the right neighbor of u. Denote by t right neighbor
of s. If d(s) > d(r) then:

• Case (7.1) if t is light or very heavy vertex in G or non corner in G2 then recolor
s using colors {1, . . . , d(r)} ∪ {κ(s)− (d(s)− d(r)) + 1, . . . , κ(s)} from base color
palette of s.

• Case (7.2) if t is a corner in G2 and s has exactly two additional neighbors
w,w′ ∈ G2 at angle π (p(w) = p(w′)) then choose the value of function p(s) =
(1 +p(w)) mod 2 and color s in the way as vertices during Procedure 2.2 in Step
4.

• Case (7.3) if t is a corner in G2 and s has exactly two additional neighbors
w,w ∈ G2 at angle π/3 (p(w) 6= p(w′)) then recolor s using colors from extra
color palette.

• Case (7.4) if t is a corner in G2 and s has more than two additional neighbors in
G2 then recolor s using last d(s) free colors from extra color palette. If necessary,
recolor neighbors of s having value of p equal to 1.

11



If edge {v, u} ∈ G3 is isolated, then xv mod 2 6= yv mod 2, xu mod 2 6= yu mod 2 and it has
to be situated as on Figure 4 (c). Denote by o, q, r, s slight neighbors of vertices u and v.
Notice that they all have the same base color. Recall that each subset of colors from base
color palette can be identify with a subset of natural numbers. We can assume that light
vertices o, q, r, s have colors from its base color palette, for i in {1, . . . , d(o)}, {1, . . . , d(q)},
{1, . . . , d(r)}, {1, . . . , d(s)}, respectively.

To prove that Step 6 approach proper coloring we have to check if pairs of set of adjacent
vertices are disjoint. Vertices u and v with r and q do not create conflicts since

a(u, v, r)− d3(u)− d3(v) + 1 = a(u, v, r)− d(u) + κ(u)− d(v) + κ(v) + 1 ≥

≥ 3a(u, v, r)− d(u)− d(v) + 1 ≥ d(r) + 1 > d(r) ≥ d(q)

Vertices v with u do not create conflicts since κ(v)− d2(v) + 1 > a(u, v, r)− d2(v). Denote
by s right neighbor of u. For vertices u and s we need a(u, v, r)− d3(v)− d3(u) + 1 > d(s).
Assume that this inequality does not hold. Then we have:

d(s) > a(u, v, r)− d3(u)− d3(v) = a(u, v, r)− d(u) + κ(u)− d(v) + κ(v) ≥

≥ 3a(u, v, r)− d(u)− d(v) = d(r)

Hence we don’t have conflict only if d(s) ≤ d(r). Otherwise we have a conflict and must
recolor s in Step 7.

In Case 7.1 we assign to s last d(s) − d(r) colors from its base color palette. Vertices s
and v do not create conflicts since κ(s) − d(s) + d(r) ≥ a(u, v, r) − d3(v) and a(u, v, r) −
d3(v) − d3(u) + 1 > d(r). Assume that first inequality does not hold and recall that
d2(u) + d(s) ≤ κ(s) and d2(u) ≤ a(u, v, r)− d2(v). Then,

0 > κ(s)− d(s) + d(r)− a(u, v, r) + d2(v) ≥ κ(s)− d(s)− d2(u) ≥ 0,

a contradiction. Now assume that second inequality does not hold, then

d(r) > a(u, v, r)− d3(u)− d3(v) ≥ a(u, v, r)− d(u) + κ(u)− d(v) + κ(v) ≥

≥ 3a(u, v, r)− d(u)− d(v) ≥ d(r),

again a contradiction. Hence s and v are not conflicted. If vertex t is light or non-corner
then we cannot have any cascading conflicts. Also if t is very heavy we cannot have conflict
since in Step 2 vertex t took colors from its right neighbor base color palette, not from left
neighbor.

In Case 7.2 vertex s has four neighbors in G2: left, right – corners in G2, and also two more
(w and w′) at angle π. Notice that if w = (x, y) then w′ = (x± 2, y ± 2), so p(w) = p(w′).
In this case in s we can put p(s) = (1 + p(w)) mod 2 and assign to s colors in the same
way as we did it during Step 4. We do not create conflicts since in neighborhood of s

12



only w and w′ had assigned extra colors in previous steps, but d(s) + d2(w) ≤ κ(s) and
d(s) + d2(w′) ≤ κ(s).

In Case 7.3 vertex s has four neighbors in G2: left, right – corners in G2, and also two more
(w and w′) at angle π/3. Notice that if w = (x, y) then w′ = (x± 1, y± 1) so p(w) 6= p(w′).
Since w and w′ in Step 4 took d2(w) + d2(w′) free colors from extra color palette, we have

κ(s)−d2(w)−d2(w′) = κ(s)−d(w)+κ(w)−d(w′)+κ(w′) ≥ 3a(s, w,w′)−d(w)−d(w′) ≥ d(s)

free colors in extra color palette, and s can use them to color itself.

Notice that if w and w′ are the only neighbors of s except u and t, then it cannot be at
angle 2π/3. If so, they are both neighbors of s (or t), but then t (respectively s) has at
most one neighbor in G2 and is not a corner – a contradiction.

In Case 7.4 vertex s has more than four neighbors in G2. Denote by b and c adjacent
neighbors of s, different then t and u. Assume without loss of generality that p(c) = 0 and
p(b) = 1 (c is in the first and b is in the second set of bipartition during Procedure 2.2 in
Step 4). Let e be the third neighbor of b with the same base color as c, and f, f ′ be its
slight neighbors with base color as in s (see Figure 5).

Figure 5: Configuration in Case 7.5

If e is light vertex in G or is a corner in G2 or db
2(c) ≥ db

2(e) then the largest color from
extra color palette assigned to b or c is

l(b, c) = db
2(c) + d2(b) = d(c)−max{a(c, b, s), a(c, b, f)}+ d(b)− κ(b).

Hence s can assign colors {l(b, c) + 1, . . . , l(b, c) + d(s)} from extra color palette and no
conflicts are being created. We have to check, if s do not exceeded a capacity of extra
palette. But

ω(G)/3− l(b, c) = ω(G)/3− d(c) + max{a(c, b, s), a(c, b, f)} − d(b) + κ(b) ≥

≥ 3 max{a(c, b, s), a(c, b, f)} − d(c)− d(b) ≥ max{d(s), d(f)} ≥ d(s)

13



Hence the largest color assigned to s is not greater then ω(G)/3. If e is a non corner in G2

and db
2(c) < db

2(e) then:

l(b, c) = db
2(e) + d2(b) = d(e)−max{a(e, b, f), a(e, b, f ′)}+ d(b)− κ(b).

and:

ω(G)/3− l(b, c) = ω(G)/3− d(e) + max{a(e, b, f), a(e, b, f ′)} − d(b) + κ(b) ≥

≥ 3 max{a(e, b, f), a(e, b, f ′)} − d(e)− d(b) ≥ max{d(f), d(f ′)}

If max{d(f), d(f ′)} ≥ d(s) then we can assign to s colors {l(b, c) + 1, . . . , l(b, c) +d(s)} from
extra color palette and no conflict occurs and s also do not fall off its base color palette.
But if max{d(f), d(f ′)} < d(s) we have to make an Extra Step to recolor vertex b and avoid
conflicts.

Extra Step Let b be a corner in G2, p(b) = 1.

Case (i) If its down-right (or up-right) neighbor (t) is a corner in G2, its up-right (down-
right) neighbor (e) is not a corner in G2, denote by c left neighbor of b, by r left
neighbor of c, by s down-left (up-left) neighbor of b, by u left neighbor of s and by
f, f ′ remaining slight neighbors of b. If u is a heavy vertex, d(r) < d(s), db

2(c) < db
2(e)

and max{d(f), d(f ′)} < d(s) then recolor last d(s) − max{d(f), d(f ′)} colors from
extra color palette to {max{d(f), d(f ′)} + 1, . . . , d(s)} colors from base color palette
of s.

Case (ii) If its up-left (or down-left) neighbor (u) is a corner in G2, its down-left (up-left)
neighbor (e) is not a corner in G2, denote by c right neighbor of b, by v left neighbor of
u, by r up-left neighbor of u, by q down-left neighbor of u, by s up-right (down-right)
neighbor of b, by t right neighbor of s and by f remaining slight neighbor of b. If
t is a heavy vertex, max{d(r), d(q), d(f)} < d(s) and db

2(c) < db
2(e) then recolor last

d(s)−max{d(r), d(q)} colors from extra color palette to {max{a(u, v, r), a(u, v, q)}−
d3(v) + 1, . . . ,max{a(u, v, r), a(u, v, q)} − d3(v) + d(s)−max{d(r), d(q)}} colors from
base color palette of s.

Notice that conditions in Extra Step correspond to the situation concerned by Case 7.4 (see
Figure 5). As the result of this Step we avoid conflicts between s and its neighbors by freeing
largest colors in extra color palette. Finally we have to check if there are no conflicts with
b. Indeed, if b is the neighbor of t then it takes {max{d(f), d(f ′)}+ 1, . . . , d(s)} colors from
base color palette of s. No conflict occurs since e is not a corner, {max{d(f), d(f ′)}+ 1 >
max{d(f), d(f ′)} and the smallest color used in t from base color palette of s is not
smaller than d(s) + 1. On the other hand, if b is the neighbor of u then it takes col-
ors {max{a(u, v, r), a(u, v, q)} − d3(v) + 1, . . . ,max{a(u, v, r), a(u, v, q)} − d3(v) + d(s) −
max{d(r), d(q)}} from base color palette of s. There is also no conflicts here since e is not

14



a corner and max{a(u, v, r), a(u, v, q)} − d3(v) + 1 > max{a(u, v, r), a(u, v, q)} − d3(v) −
d3(u) + 1 > d(s) > max{d(q), d(r)}, as proved before. We also do not exceed our palette
since max{a(u, v, r), a(u, v, q)}− d3(v) + d(s)−max{d(q), d(r)} ≤ ω(G)/3 (it holds because
κ(s)− d(s) + max{d(q), d(r)} ≥ max{a(u, v, r), a(u, v, q)} − d2(v), proved before).

Hence we arrived at the thesis of Theorem A.1.

Therefore, we presented additional steps in algorithm from Section 3 which allow multicolor
all hexagonal graph in 2-local model. Hence we have shown different than previously known
2-local 4/3-approximation algorithm for multicoloring hexagonal graphs – the algorithm
with the best known ratio in this model of computation.

15


