
1-local 7/5-competitive Algorithm for Multicoloring Hexagonal

Graphs

Petra Šparl
University of Maribor,
FCE, Smetanova 17,

SI-2000 Maribor, Slovenia
petra.sparl@uni-mb.si

Rafa l Witkowski∗

Adam Mickiewicz University,
Faculty of Mathematics and Computer Science,

ul. Umultowska 87
Poznań, Poland
rmiw@amu.edu.pl

Janez Žerovnik†

University of Ljubljana,
Faculty of mechanical engineering,

Aškerčeva 6,
SI-1000 Ljubljana, Slovenia

and
Institute of Mathematics, Physics and Mechanics,

Ljubljana, Slovenia
janez.zerovnik@fs.uni-lj.si, janez.zerovnik@imfm.si

February 26, 2010

Abstract

Hexagonal graphs are graphs induced on subsets of vertices of triangular lattice.
They arise naturally in studies of cellular networks. We present a 1-local 7/5-competitive
distributed algorithm for multicoloring a hexagonal graph, thereby improving the pre-
vious 1-local 17/12-competitive algorithm.

1 Introduction

A fundamental problem concerning cellular networks is to assign sets of frequencies (colors)
to transmitters (vertices) in order to avoid unacceptable interferences [2]. The number of
∗This work was supported by grant N206 017 32/2452 for years 2007-2010
†Supported in part by ARRS, the research agency of Slovenia.

1

frequencies demanded at a transmitter may vary between transmitters. In a usual cellular
model, transmitters are centers of hexagonal cells and the corresponding adjacency graph
is a subgraph of the infinite triangular lattice. An integer d(v) is assigned to each vertex of
the triangular lattice and will be called the demand of the vertex v. The vertex weighted
graph induced on the subset of the triangular lattice of vertices of positive demand is called
a (vertex weighted) hexagonal graph. Hexagonal graphs arise naturally in studies of cellular
networks. A proper multicoloring of G is a mapping f from V (G) to subsets of integers such
that |f(v)| ≥ d(v) for any vertex v ∈ V (G) and f(v) ∩ f(u) = ∅ for any pair of adjacent
vertices u and v in the graph G. The minimal cardinality of a proper multicoloring of G,
χm(G), is called the multichromatic number. Another invariant of interest in this context
is the (weighted) clique number, ω(G), defined as follows: the weight of a clique of G is
the sum of demands on its vertices and ω(G) is the maximal clique weight on G. Clearly,
χm(G) ≥ ω(G). It was shown in [4] that it is NP-complete problem to decide whether
χm(G) = ω(G) .

A framework for studying distributed online assignment in cellular networks was developed
in [3]. An algorithm is k-local if the computation at any vertex v uses only the information
about the demands of vertices at distance at most k from v. In [3] distinction between
online and offline algorithms was introduced and the definition of p-competitive algorithm
was given. In the same paper, a 3/2-competitive 1-local, 17/12-competitive 2-local and 4/3-
competitive 4-local algorithms were outlined. Later, a 4/3-competitive 2-local algorithm
was developed [6]. The best ratio for 1-local case was first improved to 13/9 [1], and later
to 17/12 [9]. In this paper we develop a new 1-local algorithm which uses no more than
7
5ω(G) +O(1) colors, implying the existence of a 7/5-competitive algorithm.

It may be worth mentioning that the approximation bound for multicoloring algorithms
on hexagonal graphs χm(G) ≤ (4/3)ω(G) + O(1) [4, 5, 6] is still the best known, both for
distributed and not distributed models of computation. In view of this one can naturally
take 4/3 as (maybe too ambitious) goal ratio for 1-local algorithms. With this assumption,
the improvement [1] from 3/2 to 13/9 decreases the difference to the goal ratio 4/3 for one
third (because (3/2-13/9) / (3/2-4/3) = 1/3). Later improvements from 13/9 to 17/12 [9],
and from 17/12 to 7/5 (this paper) are both closing of the remaining gap for 1/4 of the
difference.

Our algorithm substantially differs from the algorithms in [1] and [6] which are composed of
two stages. At the first stage, a triangle-free hexagonal graph with weighted clique number
no larger than dω(G)/3e is constructed from G, while at the second stage an algorithm for
multicoloring a triangle-free hexagonal graph is used (see [1], [7], [10]). Our improvement
is based on the idea to borrow some colors used in the first stage for demands of the second
stage. This in particular implies that the second stage of our algorithm cannot be applied
for multicoloring arbitrary triangle-free hexagonal graphs.

The main result of this paper is

Theorem 1.1 There is a 1-local distributed approximation algorithm for multicoloring hexag-

2

onal graphs which uses at most 7
5ω(G) + O(1) colors. Time complexity of the algorithm at

each vertex is constant.

In [3] it was proved that a k-local c-approximate offline algorithm can be easily converted
to a k-local c-competitive online algorithm, so we have:

Corollary 1.1 There is a 1-local 7/5-competitive online algorithm for multicoloring hexag-
onal graphs.

The paper is organized as follows: in the next section we formally define some basic ter-
minology. In Section 3 we present an overview of the algorithm, while in Section 4 we will
prove Theorem 1.1.

2 Basic definition and useful facts

A vertex weighted graph is given by a triple G(E, V, d), where V is the set of vertices, E is
the set of edges and d : V → N is a weight function assigning (nonnegative) integer demands
to vertices of G.

Following the notation from [4], the vertices of the triangular lattice T can be described as
follows: the position of each vertex is an integer linear combination x~p+ y~q of two vectors
~p = (1, 0) and ~q = (1

2 ,
√

3
2). Thus vertices of the triangular lattice may be identified with

pairs (x, y) of integers. Two vertices are adjacent when the Euclidean distance between them
is one. Therefore each vertex (x, y) has six neighbors: (x − 1, y), (x − 1, y + 1), (x, y + 1),
(x + 1, y), (x + 1, y − 1), (x, y − 1). For simplicity we refer to the neighbors as: left, up-
left, up-right, right, down-right and down-left. Assume that we are given a weight function
d : V → {0, 1, 2, . . .} on vertices of triangular lattice. We define a weighted hexagonal graph
G = (V,E, d) as an induced subgraph on vertices of positive demand on the triangular
lattice (see Figure 1). Sometimes we want to work with (unweighted) hexagonal graphs
G = (V,E) that can be defined as induced on subsets of vertices of the triangular lattice.

There exists an obvious 3-coloring of the infinite triangular lattice which gives partition of
the vertex set of any hexagonal graph into three independent sets. Let us denote a color
of any vertex v in this 3-coloring by bc(v) and call it a base color (for simplicity we will
use red, green and blue as base colors and their arrangement is given in Figure 1), i.e.
bc(v) ∈ {R,G,B}.

We call a triangle-free hexagonal graph an induced subgraph of the triangular lattice without
3-clique. We define a corner in a triangle-free hexagonal graph as a vertex which has at
least two neighbors and none of them are at angle π. A vertex is a right corner if it has an
up-right or a down-right neighbor, and otherwise it is a left corner (see Figure 2). A vertex
which is not a corner is called a non-corner.

3

Figure 1: An example of a hexagonal graph (with base coloring)

Figure 2: All possibilities for: (a) - left corners, (b) - right corners

Definition 2.1 In graph G = (V,E), we call a coloring f : V → {1, . . . , k} k-good if for
every odd cycle in G and for every i, 1 ≤ i ≤ k, there is a vertex v ∈ V in the cycle such
that f(v) = i. A graph is k-good if such coloring exists.

Lemma 2.1 [8] Consider a 3-coloring (R,G,B) of the triangular lattice. Every odd cycle of
the triangle-free hexagonal graph G contains at least one non-corner vertex of every color.

As the elegant proof of Sudeep and Vishwanathan [8] is very short, we recall it for com-
pleteness and for future reference.

Proof: Assume without loss of generality that there exists an odd cycle in the graph which
does not have a non-corner vertex colored red. Notice that in the 3-coloring of the triangular
lattice, a corner has all its neighbors colored by the same color (they are at the angle 2π/3

4

since the graph is triangle-free). Hence, if all neighbors of a red colored corner are blue, we
can recolor this corner by green color and vice-versa. That gives a valid 2-coloring of an
odd cycle, a contradiction.

In addition to the basic 3-coloring we will also use the following obvious proper 4-coloring
of the infinite triangular lattice which gives partition of the vertex set of any hexagonal
graph into four independent sets. Let us denote a color of any vertex v in this 4-coloring
by ec(v) and call it extra color (for simplicity we will use cyan, magenta, yellow and black
as extra colors and their arrangement is given in Figure 3), i.e. ec(v) ∈ {C,M, Y,K}.

Figure 3: An example of a hexagonal graph with (extra) 4-coloring

Note that this coloring is defined in the way that each line is properly colored by exactly
two of the four extra colors. Moreover we can prove the following fact:

Lemma 2.2 In a triangle-free hexagonal graph corners of each odd cycle meet at least three
of the four extra colors.

Proof: Assume that a cycle in triangle-free hexagonal graph meets corners of only one
color. Note that the distance on a line from one corner to another corner of the same extra
color is even. Hence, the length of cycle is even.
Assume now that cycle in triangle-free hexagonal graph meets corners of only two colors.
Distance on a straight line between two corners of the same color is always even, and
distance between two corners of different color is always odd. Each time when we have a
straight path from a corner of the first color to a corner of the second color, we have to
have a straight path from corner of the second color to the first one as well, since we have

5

a cycle. Hence, length of the cycle is even.
Therefore all odd cycles meet at least three colors in this 4-coloring.

Notice that if a graph G is k-good then after removing vertices colored by any of those k
colors, the resulting graph is bipartite. For any weighted bipartite graph H, χm(H) = ω(H)
(see [5]), and it can be optimally multicolored by the following 1-local procedure.

Procedure 2.1 Let H = (V,E, d) be a weighted bipartite graph and let a bipartition V =
V ′ ∪ V ′′ be given. We get an optimal multicoloring of H if to each vertex v ∈ V ′ we assign
a set of colors {1, 2, . . . , d(v)}, while with each vertex v ∈ V ′′ we associate a set of colors
{m(v) + 1,m(v) + 2, . . . ,m(v) + d(v)}, where m(v) = max{d(u) : {u, v} ∈ E}.

Proof: Notice that this procedure is 1-local, since each vertex v uses only its weight function
d(v) or calculate value m(v) which is well known from its neighbors. From definition of m(v)
it is easy to see, that no conflict occurs in this multicoloring. The biggest number of color
used is

max{max{d(v) : v ∈ V ′},max{d(v) +m(v) : v ∈ V ′′}} =

= max{max{d(v) : v ∈ V ′},max{d(v) + max{d(u) : {u, v} ∈ E} : v ∈ V ′′}} =

= max{max{d(v) : v ∈ V ′},max{d(v) + d(u) : {u, v} ∈ E}} = ω(G)

since in bipartite graph the only cliques are edges and isolated vertices.

Notice that in any weighted hexagonal graph G, a subgraph of the triangular lattice T
induced by vertices with positive demands d(v), the only cliques are triangles, edges and
isolated vertices. Note also that we assume that all vertices of T which are not in G have
to have demand d(v) = 0. Therefore, the weighted clique number of G can be computed as
follows:

ω(G) = max{d(u) + d(v) + d(t) : {u, v, t} ∈ τ(T)},

where τ(T) is the set of all triangles of T .

For each vertex v ∈ G, define base function κ as

κ(v) = max{a(v, u, t) : {v, u, t} ∈ τ(T)},

where

a(u, v, t) =
⌈
d(u) + d(v) + d(t)

3

⌉
,

is an average weight of the triangle {u, v, t} ∈ τ(T).

It is easy to observe that the following fact holds.

Fact 2.1 For each v ∈ G,

κ(v) ≤
⌈
ω(G)

3

⌉

6

We call vertex v heavy if d(v) > κ(v), otherwise we call it light. If d(v) > 2κ(v) we call
vertex very heavy.

To color vertices of G we use colors from appropriate palette. For a given color c, its palette
is defined as a set of pairs {(c, i)}i∈N. A palette is called base color palette if c ∈ {R,G,B},
while it is called additional color palette otherwise.

In our 1-local model of computation we assume that each vertex knows its coordinates as
well as its own demand (weight) and demands of all it neighbors. In the next section we will
show how using only this information, each vertex has to color itself properly in constant
time and hence in a distributed way.

3 Algorithm and its correctness

Our algorithm consists of three main phases. In the first phase (Step 1 and 2 below) vertices
take κ(v) colors from its base color palette, so use no more than ω(G) colors. After this
phase all light vertices are fully colored while the remaining vertices form a triangle-free
hexagonal graph with weighted clique number not exceeding dω(G)/3e. Very heavy vertices
are isolated in the remaining graph and are therefore easily colored, but have to be treated
separately (Step 2). In the second phase (steps 3 and 4) we color black corners by assigning
free colors from its neighbors. After this phase we construct 6-good coloring of the remaining
graph. Recall that in 6-good coloring, a graph is bipartite after removing vertices of any of
these six colors. Roughly speaking, if we use six times Procedure 2.1 and color such graphs
optimally with weight function equal in each vertex to 1/5 of its demands, then we would
fully color the remaining graph and use no more than 6/5 colors needed in the new graph.

More precisely, our algorithm consists of the following steps:

Algorithm

Step 0 For each vertex v = (x, y) ∈ V compute its base color bc(v)

bc(v) =

R if (x+ 2y) mod 3 = 0
G if (x+ 2y) mod 3 = 1
B if (x+ 2y) mod 3 = 2

,

and its base function value

κ(v) = max
{⌈

d(u) + d(v) + d(t)
3

⌉
: {v, u, t} ∈ τ(T)

}
.

Step 1 For each vertex v ∈ V assign to v min{κ(v), d(v)} colors from its base color palette.
Construct a new weighted triangle-free hexagonal graph G1 = (V1, E1, d1) where
d1(v) = max{d(v) − κ(v), 0}, V1 ⊆ V is the set of vertices with d1(v) > 0 (heavy

7

vertices) and E1 ⊆ E is the set of all edges in G with both endpoints from V1 (E1 is
induced by V1).

Step 2 For each vertex v ∈ V1 with d1(v) > κ(v) (very heavy vertices) assign free colors
from the first κ(v) of base color palettes of its neighbors in T . Construct a new graph
G2 = (V2, E2, d2) where d2 is the difference between d1(v) and the number of assigned
colors in this step, V2 ⊆ V1 is the set of vertices with d2(v) > 0 and E2 ⊆ E1 is the
set of all edges in G1 with both endpoints from V2 (E2 is induced by V2).

Step 3 For each vertex v = (x, y) ∈ V compute its extra color ec(v)

ec(v) =

C if x mod 2 + 2 ∗ (y mod 2) = 0
M if x mod 2 + 2 ∗ (y mod 2) = 1
Y if x mod 2 + 2 ∗ (y mod 2) = 2
K if x mod 2 + 2 ∗ (y mod 2) = 3

.

Step 4 For each corner vertex v ∈ V2 with ec(v) = K assign free colors from the first κ(v)
of base color palettes of its neighbors in T . Construct a new graph G3 = (V3, E3, d3)
where d3(v) = d2(v), V3 ⊆ V2 is the set of vertices with no corners of ec(v) = K and
E3 ⊆ E2 is the set of all edges in G2 with both endpoints from V3 (E3 is induced by
V3).

Step 5 Determine a 6-good coloring of G3 – put each vertex v ∈ V3 in exactly one of the
six sets defined by:

I : red non-corners in G3

II : green non-corners in G3

III : blue non-corners in G3

IV : cyan corners in G3

V : magenta corners in G3

V I : yellow corners in G3

Step 6 For each set S ∈ {I, II, III, IV, V, V I} do as follows: remove from G3 all vertices
from S, find a bipartition of the remaining graph and apply Procedure 2.1 to satisfy
dd3(v)/5e demands in G3\S by colors from corresponding additional color palette.

4 Correctness proof

At the very beginning of the algorithm there is a 1-local communication when each vertex
finds out about the demands of all its neighbors. From now on, no more communication
will be needed. Recall that each vertex knows its position (x, y) on the triangular lattice T .

In Step 0 there is nothing to prove.

8

In Step 1 each heavy vertex v is assigned κ(v) colors from its base color palette, while
each light vertex u is assigned d(u) colors from its base color palette. Hence the remaining
weight of each vertex v ∈ G1 is

d1(v) = d(v)− κ(v).

Note that G1 consists only of heavy vertices, therefore

Lemma 4.1 G1 is a triangle-free hexagonal graph.

Proof: For any {v, u, t} ∈ τ(G), since 3 min {κ(v), κ(u), κ(t)} ≥ d(v) + d(u) + d(t) and
min {κ(v), κ(u), κ(t)} ≥ min {d(v), d(u), d(t)}, at most two of d1(v), d1(u), d1(t) are strictly
positive and at least one of the vertices u, v and t has all its required colors totally assigned
in Step 1. Therefore, the graph G1 does not contain 3-clique, i.e. it is a triangle-free hexag-
onal graph.

In Step 2 only vertices with d1(v) > κ(v) (very heavy vertices) are colored. If vertex v
is very heavy in G then it is isolated in G1 (all its neighbors are light in G). Otherwise, for
some {v, u, t} ∈ τ(T) we would have

d(v) + d(u) > 2κ(v) + κ(u) ≥ 3a(v, u, t) ≥ d(v) + d(u),

a contradiction. Without loss of generality we may assume that bc(v) = R. Denote by

DG(v) = min{κ(v)− d(u) : {u, v} ∈ T, bc(u) = G},

DB(v) = min{κ(v)− d(u) : {u, v} ∈ T, bc(u) = B}.

Obviously, DG(v), DB(v) > 0 for very heavy vertices v ∈ G. Since in Step 1 each light
vertex t uses exactly d(t) colors from its base color palette, we have at least DG(v) free
colors from the green base color palette and at least DB(v) free colors from the blue base
color palette, so that vertex v can assign those colors to itself. Then, we would have G2

with ω(G2) ≤ dω(G)/3e. To prove it, we will need the following lemma:

Lemma 4.2 In G1 for every edge {v, u} ∈ E1 holds:

d1(v) + d1(u) ≤ κ(v), d1(u) + d1(v) ≤ κ(u).

Proof: Assume that v and u are heavy vertices in G and d1(v) + d1(u) > κ(v). Then for
some {v, u, t} ∈ τ(T) we have:

d(v) + d(u) = d1(v) + κ(v) + d1(u) + κ(u) > 2κ(v) + κ(u) ≥ 3a(u, v, t) ≥ d(u) + d(v),

again a contradiction.

9

Fact 4.1

ω(G2) ≤
⌈
ω(G)

3

⌉
.

Proof: Recall that in a hexagonal graph the only cliques are triangles, edges and isolated
vertices. Since G1 is a triangle-free hexagonal graph, G2 also does not contain any triangle,
so we have only edges and isolated vertices to check.

For each edge {v, u} ∈ E2 from Lemma 4.2 and Fact 2.1 we have:

d2(v) + d2(u) ≤ d1(v) + d1(u) ≤ κ(v) ≤ dω(G)/3e.

For each isolated vertex v ∈ G2 we should have d2(v) ≤ dω(G)/3e. Indeed, if d2(v) ≤ κ(v),
then it holds by Fact 2.1. If d2(v) > κ(v), then d1(v) > κ(v), so v has to borrow colors from
its neighbors’ base color palettes in Step 2. Then, for bc(v) = R,

d2(v) = d1(v)−DG(v)−DB(v) ≤ d(v)− κ(v)− κ(v) + d(u)− κ(v) + d(t) ≤

≤ 3a(v, u, t)− 3κ(v) ≤ 0

for some {v, u, t} ∈ τ(T). Hence, d2(v) ≤ dω(G)/3e, and so ω(G2) ≤ dω(G)/3e.

In Step 3 there is nothing to prove.

In Step 4 each vertex v has to decide whether it is a corner in G2 or not. Only heavy
neighbors of v can still exist in G2. Unfortunately, in 1-local model v does not know which
of his neighbors are heavy (and still exist in G2) and which are light. Vertex v knows only
where its neighbors with d(u) ≤ max{a(v, u, t) : {v, u, t} ∈ τ(T)} are located. We call those
vertices slight neighbors of v. They must be light and, so, they are fully colored in Step 1.
Thus, v knows where it cannot have neighbors in G2 and presumes that all its neighbors
which are not slight, still exist in G2. Based on that knowledge, it can decide whether it is
a corner or not. In each triangle in τ(T) containing v at least one neighbor of v is slight, so
v has at least three such neighbors. If vertex v has more than four slight neighbors, then
it is a non-corner. If vertex v has four slight neighbors, then the remaining two are not
slight. In this case if an angle between those two are π, then v is non-corner, otherwise it
is a corner – a right corner if its down-left, up-left and right neighbors are slight, and a left
corner if its down-right, up-right and left neighbors are slight. If vertex v has three slight
neighbors, then it is a corner and distinction between left and right is determined in the
same way as above.

In Step 4 we take corners and use again the base color palettes. If vertex v ∈ G2 is
a corner, it means that it has three slight neighbors with the same base color. Without
loss of generality, assume that bc(v) = R and its slight neighbors’ base color is blue. Recall
function DB from Step 2 – we have DB(v) free colors from blue base color palette. We
claim that

10

Lemma 4.3 If v is a corner in G2 with three slight neighbors colored blue, then

d2(v) ≤ DB(v).

Proof: Let v be a red corner in G2. Without loss of generality assume that t is the green
vertex which is not slight neighbor of v, and u is the blue vertex which is a slight neighbor
of v so that {u, v, t} ∈ τ(T) is a triangle. Then we have

κ(v) + d2(v) + a(u, v, t) + d(u)
?
≤ d(v) + d(t) + d(u) ≤ 3a(u, v, t) ≤ a(u, v, t) + 2κ(v)

d(u) + d2(v) ≤ κ(v)

d2(v) ≤ κ(v)− d(u)

and ? occurs cause d2(v) = d(v) − κ(v) and from definition of slight neighbors d(t) ≥
a(u, v, t). Since v is a corner, each slight neighbor of v has to belong to some triangle in
τ(T) in which there exists a non slight neighbor. Hence we can repeat this argument for all
slight neighbors of v. As

d2(v) ≤ κ(v)− d(u)

holds for any slight neighbor of v, it is true for the minimum, i.e. d2(v) ≤ DB(v).

Therefore, vertex v has as much as d2(v) free colors from the blue base color palette at his
disposal. After that no conflict occurs because all black corners in G2 are well separated
since extra colors provide a proper 4-coloring of G2.

For correctness of Step 5 we need to prove the following fact:

Fact 4.2 Graph G3 is 6-good.

Proof: A proper 6-coloring of this graph is given in description of Step 5. It is clear that
all sets {I, II, III, IV, V, V I} are independent and each vertex v ∈ G3 is in exactly one of
those sets. Each odd cycle meets all of those six sets, which follows from Lemmas 2.1 and
2.2.

In Step 6 we have 6 substeps, in each we remove from G3 vertices from one of the sets
{I, II, III, IV, V, V I}. In the remaining graphs we need to determine its bipartition in 1-
local model. For sets {I, II, III} the procedure is the same – for simplicity, consider only
graph GI = (VI , EI) where VI is obtained from V3 by removing vertices from set I, ie. all
red non-corners. From proof of Lemma 2.1 we can make the following bipartition:

• first set: blue vertices and left red corners, ie. red corners with all green neighbors

• second set: green vertices and right red corners, ie. red corners with all blue neighbors

11

It is clear that this is a bipartition of GI and that it can be computed in the 1-local model.

For sets {IV, V, V I} we also have an easy procedure – for simplicity, consider only graph
GIV = (VIV , EIV) where VIV is obtained from V3 by removing vertices from set IV , ie. all
cyan corners. Recall that black corners were removed in Step 4 and hence there may exist
only magenta or yellow corners in GIV . We can make the following bipartition:

• first set: magenta vertices and non-corners with neighbors colored yellow or black

• second set: yellow vertices and non-corners with neighbors colored magenta or cyan

In the first and second set magenta and yellow vertices are well separated. All other vertices
are non-corners after removing black corners in Step 4 and cyan corners in this substep.
Each non-corner has both of its neighbors of the same extra color – if it is yellow, then the
vertex has to be in the first set, while if it is magenta, then vertex has to be in the second
set. Remaining non-corners with neighbors with extra color black or cyan form a line in
GIV which never meets any corner, since corners in these two colors do not exist in graph
GIV . We can divide them into two sets of our bipartition in arbitrary way (see Figure 4).

Figure 4: Graph GIV with bipartition

Next, we can apply Procedure 2.1 with bipartitions defined above and weight function on
each vertex v equal to dd3(v)/5e, assigning colors from one of six additional color palettes.
The problem is that, under 1-locality assumption, vertices cannot calculate value of d3 of
their neighbors, which is needed in Procedure 2.1 to calculate value m(v) = max{dd3(u)/5e :
{u, v} ∈ E3}. However, we can replace d3(u) by dv

3(u), which is the number of expected
demands on vertex u in vertex v after Step 4, and take m′(v) = max{ddv

3(u)/5e : {u, v} ∈
E3}. More precisely,

dv
3(u) = d(u)−max{a(u, v, t) : {u, v, t} ∈ τ(T)}

Note that dv
3(u) ≥ d3(u) for any {u, v} ∈ E3. However,

12

Lemma 4.4 For every {v, u} ∈ E3 we have

d3(v) + dv
3(u) ≤ κ(v).

Proof: Assume that this inequality does not hold, hence d3(v) + dv
3(u) > κ(v). Denote by

b(u, v) = max{a(u, v, t) : {u, v, t} ∈ τ(T)}.

Then for some {t, v, u} ∈ τ(T) we have:

d(v) + d(u) = d3(v) + κ(v) + dv
3(u) + b(u, v) > 2κ(v) + b(u, v) ≥

≥ 3a(u, v, t) ≥ d(u) + d(v),

a contradiction.

Hence, if we use dv
3 instead of d3 at each vertex from the second set of our bipartition, we

formally work with a new graph G̃3 with a new ω(G̃3). Because of Fact 2.1 and Lemma 4.4
we have the inequality

ω(G̃3) ≤
⌈
ω(G)

3

⌉
analogous to the inequality from Fact 4.1. Thus, Procedure 2.1 works and in one substep
uses at most dω(G)/15e+ 1 colors from one of the additional color palettes.

During Step 6 each vertex v participates in exactly five from six rounds (in each round one
set is removed from G3) and dd3(v)/5e colors are assigned in each. Therefore, at the end,
all demands are satisfied.

Ratio

We claim that during the first phase (Steps 1 and 2) our algorithm uses at most ω(G) + 2
colors. To see this, notice that in Step 1 each vertex v uses at most κ(v) colors from its
base color palette and, by Fact 2.1 and the fact that there are three base colors, we know
that no more than 3 dω(G)/3e ≤ ω(G) + 2 colors are used. Note also that in Steps 2 and
4 we use only those colors from base color palettes which had not been used in Step 1, so
overall no more than ω(G) + 2 colors are used in total in the first and second phase.

To count the number of colors used in the third phase (Step 6) notice that we divide the
demands of each vertex in G3 into five equal parts. Each vertex v participates in five from
six rounds and assigns dd3(v)/5e colors in each round. Since in each round of Step 6 we
use ω(G3)/5 + 1 colors from additional color palette, therefore we use only 6(ω(G3)/5 + 1)
colors in total.

Let A(G) denote the number of colors used by our algorithm for the graph G. Thus, since
ω(G3) ≤ ω(G2) ≤ dω(G)/3e ≤ ω(G)/3+1, the total number of colors used by our algorithm

13

is at most

A(G) ≤ ω(G) + 2 + 6
(
ω(G3)

5
+ 1
)
≤ ω(G) + 2 +

6ω(G)
15

+
6
5

+ 6 <
7
5
ω(G) + 10.

So, the performance ratio for our strategy is 7/5 and we arrived at the statement of Theorem
1.1.

5 Conclusion

We have given a 1-local 7/5-approximation algorithm for multicoloring hexagonal graphs.
This implies a 7/5-competitive solution for the online frequency allocation problem, which
involves servicing calls in each cell in a cellular network. The distributed algorithm is
practical in the sense that frequency allocation for each base station is done locally, based
on the information about itself and its neighbors only, and the time complexity is constant.

References

[1] Chin, F.Y.L., Zhang, Y., Zhu H. A 1-local 13/9-competitive Algorithm for Multicoloring
Hexagonal Graphs, Algorithmica, vol. 54, pp 557-567 (2009)

[2] Hale, W.K. Frequency assignment: theory and applications, Proceedings of the IEEE,
vol 68(12), pp 1497-1514 (1980)

[3] Janssen, J., Krizanc, D., Narayanan, L., Shende, S. Distributed Online Frequency As-
signment in Cellular Network, Journal of Algorithms, vol. 36(2), pp 119-151 (2000)

[4] McDiarmid, C., Reed, B. Channel assignment and weighted coloring, Networks, vol.
36(2), pp. 114-117 (2000)

[5] Narayanan, L., Shende, S.M. Static frequency assignment in cellular networks, Algo-
rithmica, vol. 29(3), pp 396-409 (2001)

[6] Šparl, P., Žerovnik, J. 2-local 4/3-competitive Algorithm for Multicoloring Hexagonal
Graphs, Journal of Algorithms, vol. 55(1), pp 29-41 (2005)

[7] Šparl, P., Žerovnik, J. 2-local 5/4-competitive algorithm for multicoloring triangle-free
hexagonal graphs, Information Processing Letters, vol. 90(5), pp 239-246 (2004)

[8] Sudeep, K.S., Vishwanathan, S. A technique for multicoloring triangle-free hexagonal
graphs, Discrete Mathematics, vol. 300, pp. 256-259 (2005)

[9] Witkowski, R. A 1-local 17/12-competitive Algorithm for Multicoloring Hexagonal
Graphs, Lecture Notes of Computer Science, vol. 5699/2009, pp 346-356 (2009)

14

[10] Žerovnik, J. A distributed 6/5-competitive algorithm for multicoloring triangle-free
hexagonal graphs, International Journal of Pure and Applied Mathematics, vol. 23(2),
pp 141-156 (2005)

15

