
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

1-local 7/5-competitive Algorithm for
Multicoloring Hexagonal Graphs

Rafa�l Witkowski 1,2

Faculty of Mathematics and Computer Science
Adam Mickiewicz University
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Abstract

Hexagonal graphs are graphs induced on subsets of vertices of triangular lattice.
They arise naturally in studies of cellular networks. We present a 1-local 7/5-
competitive distributed algorithm for multicoloring a hexagonal graph, thereby im-
proving the previous 1-local 17/12-competitive algorithm.
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1 Introduction

A fundamental problem concerning cellular networks is to assign sets of fre-
quencies (colors) to transmitters (vertices) in order to avoid unacceptable in-
terferences [2]. The number of frequencies demanded at a transmitter may
vary between transmitters. In a usual cellular model, transmitters are centers
of hexagonal cells and the corresponding adjacency graph is a subgraph of the
infinite triangular lattice. An integer d(v) is assigned to each vertex of the
triangular lattice and will be called the demand of the vertex v. The vertex
weighted graph induced on the subset of the triangular lattice of vertices of
positive demand is called a (vertex weighted) hexagonal graph. Hexagonal
graphs arise naturally in studies of cellular networks. A proper multicoloring
of G is a mapping f from V (G) to subsets of integers such that |f(v)| ≥ d(v)
for any vertex v ∈ V (G) and f(v)∩ f(u) = ∅ for any pair of adjacent vertices
u and v in the graph G. The minimal cardinality of a proper multicoloring of
G, χm(G), is called the multichromatic number. Another invariant of interest
in this context is the (weighted) clique number, ω(G), defined as follows: the
weight of a clique of G is the sum of demands on its vertices and ω(G) is the
maximal clique weight on G. Clearly, χm(G) ≥ ω(G). It was shown in [4] that
it is NP-complete to decide whether χm(G) = ω(G) .

A framework for studying distributed online assignment in cellular net-
works was developed in [3]. An algorithm is k-local if the computation at any
vertex v uses only the information about the demands of vertices at distance at
most k from v. In paper [3] it was also introduced distinction between online
and offline algorithms and definition of p-competitive algorithm as well. In
[3] a 3/2-competitive 1-local, 17/12-competitive 2-local and 4/3-competitive
4-local algorithms are outlined. Later, a 4/3-competitive 2-local algorithm
was developed [6]. The best ratio for 1-local case was first improved to 13/9
[1], and later to 17/12 [8]. In this paper we develop a new 1-local algorithm
which uses no more than 7

5
ω(G) + O(1) colors, implying the existence of a

7/5-competitive algorithm.

It may be worth mentioning that the approximation bound for multicolor-
ing algorithms on hexagonal graphs χm(G) ≤ (4/3)ω(G) + O(1) [6,4,5] is still
the best known, both for distributed and not distributed model of computa-
tion. In view of this one can naturally take 4/3 as (maybe too ambitious) goal
ratio for 1-local algorithms. With this assumption, the improvements from 3/2
to 13/9, from 13/9 to 17/12, and from 17/12 to 7/5 are closing respectively a
1/3, 1/4, and 1/4 of the remaining gap.

The main result of this paper is
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Theorem 1.1 There is a 1-local distributed approximation algorithm for mul-
ticoloring hexagonal graphs which uses at most

⌈
7
5
ω(G)

⌉
+ O(1) colors. Time

complexity of the algorithm at each vertex is constant.

In [3] it was proved that a k-local c-approximate offline algorithm can be
easily converted to a k-local c-competitive online algorithm, so we have:

Corollary 1.2 There is a 1-local 7/5-competitive algorithm for multicoloring
hexagonal graphs.

The paper is organized as follows: in the next section we formally define
some basic terminology. In Section 3 we present an overview of the algo-
rithm. The proofs of some lemmas, algorithm correctness and Theorem 1.1
are omitted here and can be found in full version paper.

2 Basic definition and useful facts

A vertex weighted graph is given by a triple G(E, V, d), where V the set of
vertices, E is the set of edges and d : V → N is a weight function assigning
(nonnegative) integer demands to vertices of G.

Following the notation from [4], the vertices of the triangular lattice T can
be described as follows: the position of each vertex is an integer linear combi-
nation x�p + y�q of two vectors �p = (1, 0) and �q = (1

2
,
√

3
2

). Thus vertices of the
triangular lattice may be identified with pairs (x, y) of integers. Two vertices
are adjacent when the Euclidean distance between them is one. Assume that
we are given a weight function d : V → {0, 1, 2, . . .} on vertices of triangular
lattice. We define a weighted hexagonal graph G = (V,E, d) as an induced
subgraph on vertices of positive demand on the triangular lattice (see Figure
1).

Fig. 1. An example of a hexagonal graph (with base coloring)

There exists an obvious 3-coloring of the infinite triangular lattice which
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gives partition of the vertex set of any hexagonal graph into three independent
sets. Let us denote a color of any vertex v in this 3-coloring by bc(v) and call
it a base color (for simplicity we will use red, green and blue as base colors and
their arrangement is given in Figure 1), i.e. bc(v) ∈ {R, G,B}.

We call a triangle-free hexagonal graph an induced subgraph of the trian-
gular lattice without 3-clique. We define a corner in a triangle-free hexagonal
graph as a vertex which has at least two neighbors and none of them are at
angle π. A vertex is a right corner if it has an up-right or a down-right neigh-
bor, and otherwise it is a left corner. A vertex which is not a corner is called
a non-corner.

In graph G = (V, E), we call a coloring f : V → {1, . . . , k} k-good if for
every odd cycle in G and for every i, 1 ≤ i ≤ k, there is a vertex v ∈ V in the
cycle such that f(v) = i. A graph is k-good if such coloring exists.

Lemma 2.1 [7] Consider a 3-coloring of the triangular lattice (R,G,B). Every
odd cycle of the triangle-free hexagonal graph G contains at least one non-
corner vertex of every color.

In addition to the basic 3-coloring we will also use the following obvious 4-
coloring of the infinite triangular lattice which gives partition of the vertex set
of any hexagonal graph into four independent sets. Let us denote a color of any
vertex v in this 4-coloring by ec(v) and call it a extra color (for simplicity we
will use cyan, magenta, yellow and black as extra colors and their arrangement
is given in Figure 2), i.e. ec(v) ∈ {C, M, Y, K}.

Fig. 2. An example of a hexagonal graph with (extra) 4-coloring

Note that this coloring is defined in the way that each line is properly
colored by exactly two of the four extra colors. Moreover:

Lemma 2.2 In a triangle-free hexagonal graph corners of each odd cycle meet
at least three of the four extra colors.

Notice that if a graph G is k-good then after removing vertices colored by
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any of those k colors, the resulting graph is bipartite. For any weighted bipar-
tite graph H, χm(H) = ω(H) (see [5]), and it can be optimally multicolored
by the following 1-local procedure.

Algorithm 1 Let H = (V,E, d) be a weighted bipartite graph and let a bipar-
tition V = V ′ ∪ V ′′ be given. We get an optimal multicoloring of H if to each
vertex v ∈ V ′ we assign a set of colors {1, 2, . . . , d(v)}, while with each vertex
v ∈ V ′′ we associate a set of colors {m(v) + 1, m(v) + 2, . . . , m(v) + d(v)},
where m(v) = max{d(u) : {u, v} ∈ E}.

Notice that in any weighted hexagonal graph G, a subgraph of the triangu-
lar lattice T induced by vertices with positive demands d(v), the only cliques
are triangles, edges and isolated vertices. Note also that we assume that all
vertices of T which are not in G have to have demand d(v) = 0. Therefore,
the weighted clique number of G can be computed as follows:

ω(G) = max{d(u) + d(v) + d(t) : {u, v, t} ∈ τ(T )},

where τ(T ) is the set of all triangles of T .

For each vertex v ∈ G, define base function κ as

κ(v) = max{a(v, u, t) : {v, u, t} ∈ τ(T )},

where

a(u, v, t) =

⌈
d(u) + d(v) + d(t)

3

⌉
,

is the average weight of the triangle {u, v, t} ∈ τ(T ).

It is easy to observe that for each v ∈ G, κ(v) ≤ 	ω(G)/3
 .

We call vertex v heavy if d(v) > κ(v), otherwise we call it light. If d(v) >
2κ(v) we call vertex very heavy.

To color vertices of G we use colors from an appropriate palette. For a given
color c, its palette is defined as a set of pairs {(c, i)}i∈N. A palette is called
base color palette if c ∈ {R, G,B}, while it is called additional color palette
otherwise.

In our 1-local model of computation we assume that each vertex knows
its coordinates as well as its own demand (weight) and demands of all its
neighbors. With this knowledge, each vertex has to multicolor itself properly
in constant time in a distributed way.
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3 Algorithm and its correctness

Our algorithm consists of three main phases. In the first phase each vertex
takes κ(v) colors from its base color palette, so this step of the algorithm uses
no more than ω(G) colors. After this phase all light vertices are fully col-
ored while the remaining vertices form a triangle-free hexagonal graph with
weighted clique number not exceeding 	ω(G)/3
 (after technical step of re-
moving very heavy vertices). In the second phase we color black corners by
assigning free colors from its neighbors. After this phase we construct 6-good
coloring of the remaining graph. Recall that in 6-good coloring, a graph is
bipartite after removing vertices of any of these six colors. Roughly speaking,
if we use six times Algorithm 1 and color such graphs optimally with weight
function equal in each vertex to 1/5 of its demands, then we would fully color
the remaining graph and use no more than 6/5 colors needed in the new graph.

More precisely, our algorithm consists of the following steps:

Step 0 For each vertex v = (x, y) ∈ V compute its base color bc(v) :
• R if (x + 2y) mod 3 = 0
• G if (x + 2y) mod 3 = 1
• B if (x + 2y) mod 3 = 2
and its base function value

κ(v) = max

{⌈
d(u) + d(v) + d(t)

3

⌉
: {v, u, t} ∈ τ(T )

}
.

Step 1 For each vertex v ∈ V assign to v min{κ(v), d(v)} colors from its
base color palette. Construct a new weighted triangle-free hexagonal graph
G1 = (V1, E1, d1) where d1(v) = max{d(v) − κ(v), 0}, V1 ⊆ V is the set of
vertices with d1(v) > 0 (heavy vertices) and E1 ⊆ E is induced by V1.

Step 2 For each vertex v ∈ V1 with d1(v) > κ(v) (very heavy vertices) assign
free colors from the first κ(v) of base color palettes of its neighbors in T .
Construct a new graph G2 = (V2, E2, d2) where d2 is the difference between
d1(v) and the number of assigned colors in this step, V2 ⊆ V1 is the set of
vertices with d2(v) > 0 and E2 ⊆ E1 is induced by V2.

Step 3 For each vertex v = (x, y) ∈ V compute its extra color ec(v) :
• C if x mod 2 + 2 ∗ (y mod 2) = 0
• M if x mod 2 + 2 ∗ (y mod 2) = 1
• Y if x mod 2 + 2 ∗ (y mod 2) = 2
• K if x mod 2 + 2 ∗ (y mod 2) = 3

Step 4 For each corner vertex v ∈ V2 with ec(v) = K assign free colors from
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the first κ(v) of base color palettes of its neighbors in T . Construct a new
graph G3 = (V3, E3, d3) where d3(v) = d2(v), V3 ⊆ V2 is the set of vertices
with ec(v) = K and E3 ⊆ E2 is induced by V3.

Step 5 Determine a 6-good coloring of G3 – put each vertex v ∈ V3 in exactly
one of the six sets defined by:

I : red non-corners in G3

II : green non-corners in G3

III : blue non-corners in G3

IV : cyan corners in G3

V : magenta corners in G3

V I : yellow corners in G3

Step 6 For each set S ∈ {I, II, III, IV, V, V I} do as follows: remove from
G3 all vertices from S, find a bipartition of the remaining graph and apply
Algorithm 1 to satisfy 	d3(v)/5
 demands in G3\S by colors from corre-
sponding additional color palette.

For sets {I, II, III} the procedure of finding bipartition is the same — if
we consider graph GI = (VI , EI) where VI is obtained from V3 by removing
vertices from set I, ie. all red non-corners, we can make the following
bipartition: first set – blue vertices and left red corners, ie. red corners with
all green neighbors; second set – green vertices and right red corners, ie. red
corners with all blue neighbors.

For sets {IV, V, V I} the procedure of finding bipartition is the same —
if we consider graph GIV = (VIV , EIV ) where VIV is obtained from V3 by
removing vertices from set IV , ie. all cyan corners, we can make the follow-
ing bipartition: first set – magenta vertices and non-corners with neighbors
colored yellow or black; second set – yellow vertices and non-corners with
neighbors colored magenta or cyan.

To use Algorithm 1 in 1-local model we use function dv
3 instead of d3 in

each vertex from the second set of our bipartition which is defined as

dv
3(u) = d(u)−max{a(u, v, t) : {u, v, t} ∈ τ(T )}

and means the number of expected demands on vertex u in vertex v after
Step 4. It can be shown that dv

3(u) ≥ d3(u) and dv
3(u) ≤ κ(v)− d3(v) for all

{v, u} ∈ E3.
During Step 6 each vertex v participates in exactly five from six rounds

(in each round one set is removed from G3) and 	d3(v)/5
 colors are assigned
in each. Therefore, at the end, all demands are satisfied.
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4 Ratio

During the first phase (Steps 1 and 2) our algorithm uses at most ω(G) + 2
colors. Note that in Steps 2 and 4 we use only those colors from base color
palettes which had not been used in Step 1, so overall no more than ω(G) + 2
colors are used in total in the first and second phase. To count the number of
colors used in the third phase (Step 6) notice that we divide the demands of
each vertex in G3 into five equal parts. Since in each round of Step 6 we use
ω(G3)/5 + 1 colors from additional color palette, we use only 6(ω(G3)/5 + 1)
colors in total. Since ω(G3) ≤ ω(G2) ≤ 	ω(G)/3
 ≤ ω(G)/3 + 1, the number
of colors used by our algorithm for the graph G is at most

ω(G) + 2 + 6

(
ω(G3)

5
+ 1

)
≤ ω(G) + 2 +

6ω(G)

15
+

6

5
+ 6 ≤ 7

5
ω(G) + 10.

So, the performance ratio for our strategy is 7/5.
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