
A Linear Time Algorithm for 7− [3]-coloring Triangle-free

Hexagonal Graphs

Rafa l Witkowski∗

Adam Mickiewicz University,
Faculty of Mathematics and Computer Science,

Poznań, Poland
rmiw@amu.edu.pl

Janez Žerovnik
University of Ljubljana,

Faculty of mechanical engineering,
Aškerčeva 6,

SI-1000 Ljubljana, Slovenia
and

Institute of Mathematics, Physics and Mechanics,
Ljubljana, Slovenia

janez.zerovnik@fs.uni-lj.si, janez.zerovnik@imfm.si

March 6, 2011

Abstract

Given a graph G, a proper n − [p]-coloring is a mapping f : V (G) → 2{1,...,n}

such that |f(v)| = p for any vertex v ∈ V (G) and f(v) ∩ f(u) = ∅ for any pair of
adjacent vertices u and v. n − [p]-coloring is closely related to multicoloring. Finding
multicoloring of induced subgraphs of the triangular lattice (called hexagonal graphs)
has important applications in cellular networks. In this article we provide an algorithm
to find a 7-[3]-coloring of triangle-free hexagonal graphs in linear time, which solves the
open problem stated in [10] and improves the result of Sudeep and Vishwanathan [11],
who proved the existence of a 14-[6]coloring.

∗This work was supported by grant N206 017 32/2452 for years 2007-2010

1

1 Introduction

A fundamental problem concerning cellular networks is to assign sets of frequencies (colors)
to transmitters (vertices) in order to avoid unacceptable interferences [1]. The number of
frequencies demanded at a transmitter may vary between transmitters. In a usual cellular
model, transmitters are centers of hexagonal cells and the corresponding adjacency graph is
a subgraph of the infinite triangular lattice. An integer d(v) is assigned to each vertex of the
triangular lattice and will be called the demand of the vertex v. The vertex weighted graph
induced on the subset of the triangular lattice of vertices of positive demand is called a
hexagonal graph, and is denoted G = (V,E, d). Hexagonal graphs arise naturally in studies
of cellular networks. A proper multicoloring of G is a mapping f from V (G) to subsets of
integers such that |f(v)| ≥ d(v) for any vertex v ∈ V (G) and f(v)∩f(u) = ∅ for any pair of
adjacent vertices u and v in the graph G. The minimal cardinality of a proper multicoloring
of G, χm(G), is called the multichromatic number. Another invariant of interest in this
context is the (weighted) clique number, ω(G), defined as follows: The weight of a clique
of G is the sum of demands on its vertices and ω(G) is the maximal clique weight on G.
Clearly, χm(G) ≥ ω(G) and it is known that the upper bound χp(G) ≤ (4/3)ω(G) + O(1)
is best possible in general [7, 5, 6].

Better bounds can be obtained for triangle-free hexagonal graphs. The conjecture due
to McDiarmid and Reed [5] is that χm(G) ≤ (9/8)ω(G) + O(1) holds for triangle-free
hexagonal graphs. In [3] a distributed algorithm with competitive ratio 5/4 is given. In
[8] the authors report the existence of 2-local distributed algorithm with competitive ratio
5/4, while an inductive proof for ratio 7/6 is reported in [2]. A 2-local 7/6-competitive
algorithm for a sub-class of triangle-free hexagonal graphs is given in [9]. A special case of
a proper multicoloring is when d is a constant function. For example, a 7 − [3]-coloring is
an assignment of three colors between 1 and 7 to each vertex.

An elegant idea that implies the existence of a 14 − [6]-coloring as well as linear time
algorithm to fnd it, was presented in [11]. In [2] the existence of a 7 − [3]-coloring was
shown, and the inductive proof can be transformed in a polynomial time algorithms. A
shorter proof is providede in [10], but main idea of proof is based on the 4-colour theorem.
In this paper we give an linear time algorithm for 7− [3]-coloring an arbitrary triangle-free
hexagonal graph G. The main contribution is that we provide a linear coloring algorithm
for the auxiliary graphs used in [10]. Our proof is independent of the 4-color theorem and
the construction gives rise to a polinomial time algorithm for 7− [3]-coloring of triangle-free
hexagonal graphs.

The paper is organized as follows. In the next section we formally define some basic termi-
nology. In Section 3 we present an algorithm for 7 − [3]-coloring of arbitrary triangle-free
hexagonal graph G and prove its correctness.

2

2 Basic definitions and useful facts

A vertex weighted graph is given by a triple G(E, V, d), where V the set of vertices, E is the
set of edges and d : V → N is a weight function assigning (nonnegative) integer demands to
vertices of G.

Following the notation from [5], the vertices of the triangular lattice T can be described as
follows: the position of each vertex is an integer linear combination x~p+ y~q of two vectors
~p = (1, 0) and ~q = (1

2 ,
√

3
2). Thus vertices of the triangular lattice may be identified with

pairs (x, y) of integers. Two vertices are adjacent when the Euclidean distance between them
is one. Therefore each vertex (x, y) has six neighbors: (x − 1, y), (x − 1, y + 1), (x, y + 1),
(x + 1, y), (x + 1, y − 1), (x, y − 1). For simplicity we refer to the neighbors as: left, up-
left, up-right, right, down-right and down-left. Assume that we are given a weight function
d : V → {0, 1, 2, . . .} on vertices of triangular lattice. We define a weighted hexagonal graph
G = (V,E, d) as an induced subgraph on vertices of positive demand on the triangular
lattice (see Figure 1). Sometimes we want to work with (unweighted) hexagonal graphs
G = (V,E) that can be defined as induced graphs on subsets of vertices of the triangular
lattice.

Figure 1: An example of a hexagonal graph (with base coloring)

There exists an obvious 3-coloring of the infinite triangular lattice which gives partition of
the vertex set of any hexagonal graph into three independent sets. Let us denote a color
of any vertex v in this 3-coloring by bc(v) and call it a base color (for simplicity we will
use red, green and blue as base colors and their arrangement is given in Figure 1), i.e.
bc(v) ∈ {R,G,B}.

We call a triangle-free hexagonal graph an induced subgraph of the triangular lattice without
3-clique. We define a corner in a triangle-free hexagonal graph as a vertex which has at
least two neighbors and none of them are at angle π. A vertex is a right corner if it has an
up-right or a down-right neighbor, and otherwise it is a left corner (see Figure 2). A vertex
which is not a corner is called a non-corner.

3

Figure 2: All possibilities for: (a) - left corners, (b) - right corners

Figure 3: An example of a triangle-free hexagonal graph (with base coloring)

In triangle-free hexagonal graph each corner has all of its neighbors with the same base
color – in this case we call third color the free color.

A vertical path is a path in triangle-free hexagonal graph which does not contain edges from
any vertex to its right or left neighbor.

Bridge is a path in triangle-free hexagonal graph which contains only edges from vertices
to its right or left neighbor.

Each edge in triangle-free hexagonal graph is in some vertical path or bridge.

Our algorithm is based on the following observations:

Lemma 2.1 Let P be an arbitrary path of length at least 2. Let s, t ∈ P be the endpoints of
the path P . Denote by n(s), n(t) neighboring vertices in P of respectively s and t. Assume
that with s and t we colligate sets of two elements, respectively S and T , S, T ⊂ {1, 2, 3, 4}.
We can find in linear time 4 − [2] coloring of path P\{s, t} such that we can choose in s
and t one color from sets respectively S and T to avoid conflict with vertices n(s) and n(t).

4

Proof: Recall that path is bipartite graph, and bipartition can be easily found in linear
time. Assume S and T are given. A procedure of finding 4 − [2]-coloring and choosing
correct element from sets S and T can be as follows:

Step 1 Find the bipartition of the path.

Step 2 Choose one element i ∈ S.

Step 3 Choose one element j ∈ T , j 6= i.

Step 4 If s and t are in the same set of bipartition (path is of even length) then for
all vertices of this set put colors {i, j} and for vertices from other set put colors
{1, 2, 3, 4}\{i, j}.

If s and t are in the different sets of bipartition (path is of odd length) then for all
vertices of set with s put colors {i} and for vertices from other set use color {j}.
Remaining colors take arbitrary such that coloring is proper.

Observation 2.1 Lemma 2.1 is also correct, if in the set S we put only one element.

Lemma 2.2 Let P be an arbitrary path. Let X ∈ P be a subset of vertices of this path. We
call vertices x ∈ X good vertices. Assume that with each good vertex we associate sets of
two elements (good set), subset of {1, 2, 3, 4}. We can find in linear time a 4− [2]coloring
of path P\X such that for each good vertex at least one color from its good set is not used
by its neighbors.

Proof: We can put an order on path from one endpoint to the second one. Now we can
use procedure from Lemma 2.1 to color path from the first good vertex to the second good
vertex. Then, using Observation 2.1 we can extend this coloring to path from the second
good vertex to the third good vertex, and so on. If path starts or ends with vertices that
are not good, we can easily extend our coloring to those vertices.

3 Algorithm and its correctness

Our algorithm consists of two main phases. In the first phase all vertices take its base colors,
and left corners take also base color that is not used by its neighbors (the free color). In the
second phase we remove horizontal edges and remaining graph is set of independent paths.
Roughly speaking, we can start from the most right vertical path and make its 4 − [2]-
coloring arbitrary. Then we extend the coloring to any horizontal path that meets the
already colored vertical paths which gives sets of two colors to left corners of some vertical
paths that were not colored yet. The procedure repeats by choosing another vertical path
with all good left corners until all the graph is colored.

More precisely, our algorithm consists of the following steps:

5

Algorithm

Step 1 For each vertex v ∈ V assign to v its base color.

Step 2 For each left corner v ∈ V assign to v its free color.

Step 3 For each left corner v ∈ V that has no right neighbor, assign set of two number
from {1, 2, 3, 4} arbitrary (make it good).

Step 4 Divide G into vertical paths and bridges.

Step 5 While exist a vertex not fully colored do Step 5.1.

Step 5.1 Take a non colored vertical path in which all left corners are good and use pro-
cedure from Lemma 2.1 to color it. Extend the coloring to all not colored bridges
connected with this vertical path.

If some bridge is connected with left corners then assign to this left corner set of two
number from {1, 2, 3, 4} (make it good), which is forced by coloring.

4 Correctness proof

Step 1: nothing to prove.

Step 2: nothing to prove.

Step 3: After this step always exist at least one vertical path with all left good corners. It
is since the transitive closure of relation ”being on left” is strict partial order. Formally:

Definition 4.1 We can say that vertical path P1 is on left of vertical path P2 if they are
connected with bridge M such that v = M ∩ P1 is a right corner, and u = M ∩ P2 is a left
corner. In this case we will write P1 < P2.

Lemma 4.1 The transitive closure of relation from Definition 4.1 is strict partial order.

Proof: To prove the lemma we will show that relation < on vertical paths is irreflexive and
asymmetric. We will also show that the transitive closure of this relation is well defined.

Irreflexivity (¬(P1 < P1)): is easy just from definition – we cannot create bridge from a
vertical path to itself.

Asymmetry (P1 < P2 ⇒ ¬(P2 < P1)): consider two finite vertical paths P1 and P2 such
that P1 < P2, i.e. exist a bridge M such that v = M ∩P1 is a right corner, and u = M ∩P2

is a left corner. Expand those vertical paths into infinite vertical paths P1 and P2 in such a
way that to the top vertex of P1 we attach infinite up-left path, and to the bottom vertex
of P1 we attach infinite down-left path (see Figure 4). In the same way, we expand P2

6

using up-right path at the top, and down-right at the bottom. Now, if we create infinite
horizontal line L, it always has exactly one common point with P1 (v = L ∩ P1) and one
with P2 (u = L ∩ P2). Let distL(P1), P2) = x(u)− x(v) denote the distance on line L. For
the line L that covers bridge (M ∈ L) we know that distL(P1, P2) > 0. If we move the line
by 1 up or down, the dist can either remain the same or it can change by 1. Therefore,
distL(P1, P2) > 0 for all lines L, because if it goes down to 0 (v = u) there has to be a line
L′ above (or below) that has distL′(v′, u′) = 1, and then (v, v′, u′) form a triangle, which
is not possible in triangle-free graph. Thus, P1 and P2 never meet, and the set of vertices
that are to the right of P2 and the set of vertices that are to the left of P1 do not intersect.
Formally, vertex u is to the right of extended vertical path P if there is a horizontal line L,
u ∈ L, L ∩ P = v and x(v) < x(u). Similarly, vertex u is to the left of extended vertical
path P if there is a horizontal line L, u ∈ L, L∩P = v and x(v) > x(u). Hence, any bridge
starting at right corner of P2 goes to the right of P2 and hence cannot end in the left corner
of P1, so ¬(P2 < P1).

Now, we will prove that a transitive closure of this relation is well defined (P1 < P2 ∧ P2 <
P3 ⇒ ¬(P3 < P1)). Consider three finite vertical paths P1, P2, P3 such that P1 < P2 and
P2 < P3. Expand into infinite vertical paths P1 and P3 like before (see Figure 4). Consider
horizontal lines that intersect P2. Each of these lines meets all of three vertical paths P1, P2

and P3. As in previous paragraph, we can see that for each such line L x(u) < x(v) < x(w)
where u = L ∩ P1, v = L ∩ P2 and w = L ∩ P3. As distL(P1, P3) > 0 for the line L that
meets the bottom vertex of P2 it is true for any line below. Similarly distL(P1, P3) > 0 for
any line above the top vertex of P2. Hence, any bridge starting at right corner of P3 goes
to the right of P3 and cannot end in the left corner of P1, so ¬(P3 < P1).

Step 4: We can divide G into well separated vertical paths. Argument is the same as in
Step 3, and it was also shown on [11].

Step 5: If some vertex are not colored, there always exist a path with all left good corners.
Argument is the same as in Step 3 – it is impossible to create cycle in such way that bridges
connect only not colored left and right corners in one order.

7

Step 5.1: It works, since we proved Lemma 2.1. Bridges are easy to extend cause they are
bipartitie.

Concerning the running time, it is easy to check that all Steps 1-4 of the algorithm run in
time linear on |V (G)|. In Step 4 we can remember all vertical paths and for each we can
associate number of its left corners. Then if for every time we make some left corners good,
we add number of good vertices on path, so we can easily check how many good left corner
are in it, and if those numbers are the same, we can take such path. So for each path we can
decide in constant time whether all its left corners are good or not. Procedure in Lemma
2.1 works in linear time according to number of vertices on path. Extention to bridges also
work in linear time refers to number of vertices on bridge. In each path each vertex is only
once in Step 5.1, so time complexity of loop in Steps 5 is linear on |V (G)|.

5 Conclusion

In this article we provided an algorithm for 7− [3]-coloring triangle-free hexagonal graphs.
The described 7 − [3]-coloring can be extended to a proper multicoloring with at most
d(7/6)ω(G)e + O(1) colors of any weighted triangle-free hexagonal graph. The main idea
(used in for example in [4, 8, 3, 6]) is to divide the set of colors into 7 palettes and to use
the algorithm for 7 − [3]-coloring to define the order of color palettes from which vertices
will take colors from. We omit the details.

Recall that both 5− [2]-coloring of triangle-free hexagonal graphs [8] and a 4/3-competitive
algorithm for multicoloring hexagonal graphs [7] are distributed and time complexity is
constant. For the 7− [3]-coloring algorithm presented in in this paper it is no easy way to
make it in constant time in distributed model, since Procedure 2.1 doesn’t work for long
path with many good vertices. Nevertheless, most steps of the algorithm can be easily
performed locally. Therefore, it is an interesting question whether one can find a coloring
of our auxiliary graph G in a distributed way, using its rich structural properties.

8

References

[1] Hale, W.K. Frequency assignment: theory and applications, Proceedings of the IEEE, vol 68(12),
pp 1497-1514 (1980)

[2] Havet, F. Channel assignment and multicoloring of the induced subgraphs of the triangular
lattice, Discrete Mathematics, vol. 233, pp 219-231 (2001)

[3] Havet, F., Žerovnik, J. Finding a Five Bicolouring of a Triangle-free Subgraph of the Triangular
Lattice, Discrete Mathematics vol. 244, pp 103-108 (2002)

[4] Janssen, J., Krizanc, D., Narayanan, L., Shende, S. Distributed Online Frequency Assignment
in Cellular Network, Journal of Algorithms, vol. 36(2), pp 119-151 (2000)

[5] McDiarmid, C., Reed, B. Channel assignment and weighted coloring, Networks, vol. 36(2), pp.
114-117 (2000)

[6] Narayanan, L., Shende, S.M. Static frequency assignment in cellular networks, Algorithmica,
vol. 29(3), pp 396-409 (2001)

[7] Šparl, P., Žerovnik, J. 2-local 4/3-competitive Algorithm for Multicoloring Hexagonal Graphs,
Journal of Algorithms, vol. 55(1), pp 29-41 (2005)

[8] Šparl, P., Žerovnik, J. 2-local 5/4-competitive algorithm for multicoloring triangle-free hexagonal
graphs, Information Processing Letters, vol. 90(5), pp 239-246 (2004)

[9] Šparl, P., Žerovnik, J. 2-local 7/6-competitive algorithm for multicoloring a sub-class of hexag-
onal graph, International Journal of Computer Mathematics,, First published on: 22 July 2009
(iFirst) doi: 10.1080/00207160802562531

[10] Sau, I., Šparl, P., Žerovnik, J. 7/6-approximation Algorithm for Multicoloring Triangle-free
Hexagonal Graphs, submitted for publication.

[11] Sudeep, K.S., Vishwanathan, S. A technique for multicoloring triangle-free hexagonal graphs,
Discrete Mathematics, vol. 300, pp. 256-259 (2005)

9

